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Abstract

Optical system design has a significant impact on solar power plant efficiency.
It can be advantageous to be able to very precisely adapt mirror shapes. In
this article it is shown how NURBS surfaces can be used as mirrors by lining
out the equations and algorithms needed to evaluate their optical performance
by ray tracing. A parameterization scheme is given that reduces the degrees
of freedom to a level suitable for automatic processing. A secondary reflector
based on a NURBS surface is designed and adapted to a test application. By
demonstration it is proved that this is feasible on modern PCs. The new con-
centrator’s performance is calculated and compared to a CPC. It is found that
the fine-tuned NURBS reflector outperforms the CPC.

Keywords: concentrating solar power, secondary concentrators, CPC, ray
tracing, optical performance

1. Introduction

Designing optical systems for solar power tower plants and other applica-
tions is a challenging task. One wants optical devices to collect as much solar
irradiation as possible and focus it to the maximum possible extent without ab-
sorbing significant fractions of it. Moreover, such concentrators shall be cheap
to manufacture and last for many years in harsh environments. But, given that
such optical systems influence annual yield of solar power plants directly and
that their cost does not depend on the design of the shape in the first place,
almost every effort of finding even small improvements in shape efficiency is
worth it.

Historically, analytical rather than numerical approaches have been followed
to tackle the problem of finding good concentrator shapes. Good success has
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Figure 1: Coordinates (u, v) of the NURBS surface

been achieved using parabolics, cones or even combined shapes like the the
compound parabolic concentrator (CPC) suggested by Winston (1974). Con-
centrators with non-regular shapes have also been presented (see Timinger et al.
(2000) and Kribus et al. (2000)). However, even the two latter articles jump
relatively short in terms of non-regularness as they ”only” add distortion to
the well-known CPC and a concentrator shape with rectangular or polygonal
cross section to the collective of investigated shapes. The reader may be felt
left back with a vague suspect that some improvements can still be achieved
when substantially more degrees of freedom for the shape are available. And
the conclusion of Timinger et al. (2000) that the concentrators with rectangular
cross section totally unexpectedly showed better performance than the smoothly
shaped concentrators only adds to this impression.

In this contribution, NURBS (non-uniform rational Béziers spline) surfaces
are used as shapes for secondary concentrators. NURBS surfaces can have
virtually any shape. They are state of the art in free-form surface modelling
and gained wide acceptance in computer graphics for their intuitive and flexi-
ble shape editing possibilities. One negative aspect of NURBS is their relative
mathematical complexity. For example they are defined only recursively which
makes it difficult to carry out algebraic calculations. Moreover, numeric calcu-
lations with NURBS are computationally quite expensive. Both aspects have
to be addressed when one wants to use NURBS surfaces as optical devices.

2. NURBS surfaces

NURBS can be seen as an extension of the ”spline” concept for smooth two-
dimensional curves to three dimensions. Piegl and Tiller (1996) give a good
overview and introduction to the topic. Much like flat, two-dimensional curves
can be defined in a parametric way depending on just one running variable t,
NURBS surfaces are defined over a two-dimensional domain with parameters
u and v, whose values are in the interval [0, 1]. This reflects that topologically
NURBS surfaces always have a planar character (see fig. 1).

In its most generic form, a point
−→
S on a NURBS surface with (surface)

coordinates (u, v) is by definition given as interpolated and weighted average of

the n by m control points
−→
P :
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−→
S (u, v) =

n
∑

i=0

m
∑

j=0

Ni,p(u)Nj,q(v)wi,j

−→
P i,j

n
∑

i=0

m
∑

j=0

Ni,p(u)Nj,q(v)wi,j

. (1)

A weight w is associated with each control point. The basis functions N
with degrees p and q in u- and v-direction respectively do the interpolation of
the surface between the control points. They are defined as follows:

Ni,0(u) =

{

1 ∀ ui < u < ui+1

0 otherwise
(2)

Ni,p(u) =
u − ui

ui+p − ui

Ni,p−1(u) +
ui+p+1 − u

ui+p+1 − ui+1

Ni+1,p−1(u), (3)

with U being the so called knot vector. The knot vector contains n + p + 1
elements ui in nondecreasing order and determines which control points affect
the surface shape in which area. Usually, there is a knot vector U in u-direction
and V in v-direction.

Note how the basis function is defined recursively. A quick algorithm to
calculate N is given by Piegl and Tiller (1996) (see Algorithm A2.4, pp. 74-75).

3. Ray-tracing with NURBS surfaces

When it comes to assessing the performance of optical systems, tracing of
rays through the system is a very successful method. More specifically, this
means that intersection points of arbitrary rays with the surface have to be
calculated along with the surface normals at these locations. Given the recursive
definition of the NURBS surface, this obviously is not a trivial task.

3.1. Surface normal

Calculating the direction of a reflected ray requires to know the direction

of the surface normal
−→
N at the intersection point (u, v) of the surface with the

incoming ray. This, in turn, needs the partial derivatives of
−→
S (u, v) with respect

to u and v to be known. Applying the quotient rule to eq. (1) yields:
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−→
S u(u, v) :=

∂
−→
S (u, v)

∂u
=

−→c 1 −−→c 2




n
∑

i=0

m
∑

j=0

Ni,p(u)Nj,q(v)





2
,

−→c 1 =
n
∑

i=0

m
∑

j=0

N ′

i,p(u)Nj,q(v)wi,j

−→
P i,j

n
∑

i=0

m
∑

j=0

Ni,p(u)Nj,q(v), (4)

−→c 2 =
n
∑

i=0

m
∑

j=0

Ni,p(u)Nj,q(v)wi,j

−→
P i,j

n
∑

i=0

m
∑

j=0

N ′

i,p(u)Nj,q(v).

A similar expression symmetrical to this one can be given for
−→
S v. The

derivate of Ni,p(u) with respect to u, abbreviated with N ′

i,p(u) in eq. (4), is
given by Piegl and Tiller (1996) (see Algorithm A2.5, pp. 76-78) along with a
quick algorithm to compute it.

Now, with both
−→
Su and

−→
Sv at hand, computing

−→
N is straightforward:

−→
N =

−→
Su ×−→

Sv. (5)

3.2. Ray-surface-intersection

A ray −→r originating from
−→
O and emerging along direction

−→
D with parameter

t may be defined as follows:

−→r (t) =
−→
O + t

−→
D. (6)

As for any intersection point the identity −→r (t) =
−→
S (u, v) must hold, one

could just insert eq. (6) into eq. (1) and iteratively search triples of (t, u, v).
That would solve the problem. However, there is a better approach suggested by
Martin et al. (2000). The idea is to express the ray as intersection of two planes,
that are constructed using the intersection point of the ray with the NURBS
surface. This way, only two parameters have to be determined iteratively.

The Hesse normal form of a plane E is given by

−→p · −→N0 − d = 0, (7)

where −→p is a location vector to a point P ∈ E,
−→
N0 is the normal vector of

E of unit length and d is the distance of E from the origin. Applying this to
our problem yields two planes E1 and E2:

E1 : −→p · −→N1 − d1 = 0 (8)

E2 : −→p · −→N2 − d2 = 0 (9)

Martin et al. (2000) suggest for the normal vector
−→
N1 to choose
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−→
N1 =

{

(Dy,−Dx, 0) if |Dx| > |Dy| and |Dx| > |Dz|
(0, Dz,−Dy) otherwise

(10)

to ensure that
−→
N1 is always perpendicular to the ray direction

−→
D .

−→
N2 then

just becomes

−→
N2 =

−→
N1 ×

−→
D. (11)

As both E1 and E2 must contain the origin
−→
O of the ray by definition, the

distances d1 and d2 can be calculated as

d1 =
−→
N1 ·

−→
O (12)

d2 =
−→
N2 ·

−→
O. (13)

Now that the two planes E1 and E2 that contain the ray are known and
bearing in mind that the intersection point to be calculated must also satisfy
these plane equations, the problem of finding the (u, v)-coordinates of it reduces
to finding the roots of

F(u, v) =

( −→
N1 ·

−→
S (u, v) − d1−→

N2 ·
−→
S (u, v) − d2

)

. (14)

There are various numerical methods that can theoretically be applied to
the problem. However, following the advice given by Press et al. (2002) in their
excellent reference, only the Newton method is likely to reliably give a good
solution - with the downside of this choice being that the Newton method needs
a good initial estimate. We will deal with that later.

Applying the Newton method to eq. (14) immediately yields the iteration
law for the intersection point coordinates (u, v):

(

un+1

vn+1

)

=

(

un

vn

)

− J−1(un, vn) ·F(u, v), (15)

with J being the Jacobian matrix defined as:

J =

[ −→
N1 · ∂S

∂u

−→
N1 · ∂S

∂v−→
N2 · ∂S

∂u

−→
N2 · ∂S

∂v

]

=

[ −→
N1 · Su

−→
N1 · Sv−→

N2 · Su

−→
N2 · Sv

]

. (16)

3.3. Reflection

Computing direction and origin of a ray reflected on the reflective side of
the NURBS surface needs all the material outlined in sections 3.1 and 3.2 plus
some additional conditions and criteria developed in the following.

Before the Newton method can be used to iteratively calculate the inter-
section point coordinates of some incoming ray with the NURBS surface, an
initial guess is required. This initial guess must be good enough for the Newton
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method to converge to the correct, i.e. nearest to the ray’s origin, intersection
point - if any. Note that there might be zero, one or multiple intersection points.
There are many ideas how this problem can be tackled (see Abert et al. (2006)
and Nishita et al. (1990)). As in the context of secondary reflectors for solar
power tower applications the shapes topologically are significantly less complex
compared to the ones commonly discussed in literature, a simpler approach is
followed in this contribution. For the purpose of calculating a first guess for the
intersection point coordinates, the NURBS surface can be approximated with
triangles. Note that because of the definition of (u, v) (see fig. 1) it is relatively
straighforward to obtain the edge point coordinates of triangles such that the
discrete grid covers the smooth surface adequately for example by distributing
discrete (ui, vi) equally in u- and v-direction of the surface. Of course, this
discretization has to be done only once for each shape. Then, one can intersect
the incoming ray with each of these triangles (a process which virtually cries for
parallelization by the way...) and use the edge-point-averaged (u, v) coordinates
of the hit triangle closest to the ray’s origin in downstream direction as initial
guess.

With this initial guess, the Newton method will converge quickly towards the
exact intersection point. As a stop criterion, one can use the normed distance
of the current point from the two planes representing the incoming ray:

‖F(un, vn)‖ < ε (17)

During the whole iteration process, it has also to be made sure that the
(un, vn) do not fall outside of the definition range and that the Jacobian matrix
does not get singular. In the latter case, one can for example step randomly
0..10% of the distance towards the initial guess. In rare cases it might also occur
a situation where the intial guess calculation reports a hit where there in fact is
none. In this case, the Newton method would search forever, which should be
avoided, too.

With the coordinates (uS , vS) of the intersection point, the direction of the

surface normal
−→
N can be calculated following the algorithm outlined in section

3.1. If the incoming ray’s direction is −→r in, the reflected ray’s direction −→r out

becomes:

−→r out = −→r in − 2(−→r in · −→N )
−→
N. (18)

The only thing left is to check whether or not the incoming ray hits the
surface from the reflective side. One possible solution to this is to evaluate the

angle between
−→
N and −→r in:

α := ∠(
−→
N,−→r in) (19)

α >
π

2
→ reflective side hit

Eventually, moving the reflected rays origin some small distance downwards
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Figure 2: Rotating tube receiver and heliostat field

the ray’s emerging direction helps a lot in reducing erroneous self-intersections
due to rounding errors.

Now that the tools for evaluating NURBS surfaces as reflector are lined out,
the problem of designing a secondary reflector with them that is especially well
suited for discrete situations can be tackled. We will define a test application
setup first.

4. Test application setup

At the heart of the test application is a new receiver design (see fig. 2, left
part). Rather than heating up some fluid, this receiver works with solid particles.
At its entrance, small particles falling from the top of the rotating tube of the
receiver down to the bottom form some sort of curtain which will be heated up
by the incoming radiation. The hot particles will then be transported away from
the entrance aperture towards a heat exchanger. Transportation of the particles
takes place because the whole receiver tube rotates around its symmetry axis.

As far as optical performance is concerned, this special receiver design is
quite a challenge. In order to prevent the particles from falling out of the rotat-
ing tube, the receiver has to be directed slightly towards the sky (in this case
by 4◦) instead of towards the incoming radiation. Therefore, its entrance aper-
ture has to be much larger to compensate for the ”projection losses”. However,
this leads to significantly elevated radiation and convection losses. Thus, one is
tempted to add some optical device that would ”bent” the incoming radiation
by some 40◦- and ideally also concentrate it if possible.

The right part of fig. 2 depicts the heliostat field of the test application. It
has been calculated along with the altitude of the receiver aperture center using
some of the plant properties listed in table 1 and modified slightly by hand
(some heliostats located south of the tower receiver have been removed).

The ”figure of merit” or cost function value to quantify the performance
of the application is an annual yield estimation that is quick to compute. For
each full hour between sunrise and solar noon and for solar noon itself the
current power absorbed by the receiver is calculated. The absorbed power Pabs
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Property Value

Design point

Date and time June 21st at solar noon
Radiative power in receiver aperture 2 MW
Geological position

Latitude 48.2◦

Elevation 550 m
Heliostats

Facet size (width x height) 2.56 m x 3.22 m
Facets 1x1
Canting not applicable
Focus slant range
Reflectivity 87%
Tracking type Azimuth-Elevation
Mirror slope error (including sunshape error) 3.67 mrad
Elevation axis altitude (pedestal height) 2.0 m
Receiver

Type flat
Diameter 2.0 m
Orientation tilted downwards by 4◦

Altitude entrance aperture center 27.5 m

Table 1: Plant properties of the test application

is assumed to be the collected radiative power Prad minus five percent to model
reflection losses minus re-radiation and convection losses. The latter two are
summarized and modelled to be proportional to the receiver area Arec:

Pabs = 0.95Prad − 187.0
kW

m2
Arec, (20)

where the value 187.0kW/m2 is the sum of 100.0kW/m2 which is an rule of
thumb estimation of the specific convection losses and 87.0kW/m2 which is what
a black body radiator with surface temperature 840◦C would emit according to
the Stefan-Boltzman law. However, if these losses exceed 95% of Prad, Pabs is
set to zero by definition as in that case one would not operate the receiver.

This power estimation calculation is done for three days: March 21st, June
21st and December 21st. From these figures, an ”annual average current power”
is calculated by forming a weighted average, thereby making sure that the non
solar noon values count twice as much as the solar noon value to reflect day
symmetry and that the March value counts twice as much as the December and
June values to reflect annual symmetry. Multiplying the resulting value with
the daylight hours per year finally delivers the annual yield estimation.
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5. Parameterization and setup of the NURBS surface

Reading the test application setup specified in section 4, one intuitively
thinks that some kind of secondary concentrator shaped like a ”nozzle” could
improve the optical performance here. So we are talking about a closed shape
with a topology similar to that of a bent tube. Thus, we are after a NURBS
surface with circular cross-section which very much suggests to distribute nine
control points in circumferal direction. Without compromising flexibility too
much, one can decide to also use nine control point lines in lateral direction and
to set the base function degree in both directions to two. So we have (see eq. 1):

n = m := 9

p = q := 2

This choice mutually also leads to a knot vector of length n + p + 1 = 12
that again can be used both in u- and in v-direction. It can take these values:

U = V = {0.0, 0.0, 0.0, 0.25, 0.25, 0.5, 0.5, 0.75, 0.75, 1.0, 1.0, 1.0}.

The only things left to do now are the definition of the control points
−→
P i,j

and the weights wi,j . One could think of using these values as degrees of freedom
directly and let them be adopted to maximize the test application cost function
automatically. However, this would overcharge available search algorithms by
far. The huge number of degrees of freedom along with the computationally
quite expensive cost function evaluation would lead to unrealistic calculation
times. Therefore, the setting up of control point coordinates and weight values
must be performed by some model with far less parameters.

The idea of the parameterization is to arrange the NURBS control points
along some path, the ”control point path”, modelled as parametric Bézier curve,
and use the (x, y) coordinates of the control points (P1, P2, P3) of this path as
parameters:

(

Cx

Cy

)

(t) =

[

3(1 − t)2t

(

P1,x

P1,y

)

+ 3(1 − t)t2
(

P2,x

P2,y

)

+ t3
(

P3,x

P3,y

)]

l.

When t runs from zero to one, the cross section center point C of the final
shape runs from (0|0) to lP3, with l being used as scale factor representing the
lateral length of the shape. Thus, the complete path of the NURBS shape’s
cross section center point can be described with only seven parameters.

The same technique can be used to parameterize the radial extent of the
shape. The ”radius path” shall specify the radius of each cross section along
the control point path. As the exact shape of the reflector surface at the exit
aperture end is crucial for optical performance, it seems advantageous to throw
in some more degrees of freedom here. Therefore, this path is divided into two
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”arms”, with each of them being described by a quadratic Bézier curve. The
left arm shall run from (0|0) towards R1 and end in RM . The right arm shall
start in RM towards R2 and end in R3. RM shall thereby lie on the line between
R1 and R2 at a distance from R1 specified by a ”proximity factor” fprox. So we
have:

(

RM,x

RM,y

)

= (1 − fprox)

(

R1,x

R1,y

)

+ fprox

(

R2,x

R2,y

)

r =

{

2t(1 − t)R1,y + t2RM,y

(1 − t)2RM,y + 2t(1 − t)R2,y + t2R3,y.

The dimensionless preliminary radius r is converted into an interim value ri

by scaling it with a factor fs:

ri = (1 + r)fs.

Up to this point, the cross section of the concentrator shape is circular.
Making it irregular for example by allowing ovalized forms by shifting the edge
control points a bit could possibly improve optical performance. This can be
accomplished by defining the distance rCP of each control point from the control
point path as follows:

rCP =







rirexfo −j even and j ∈ {2, 6}
rirex/fo −j even and j /∈ {2, 6}
√

(rirexfo)2 + (rirex)2/f2
o −otherwise

,

with rex being the nominal radius of the exit aperture and fo being an ovality
factor. This also binds the index j to the circumferal, i.e. v-direction. Both
indices (i, j) are elements of the set {0, 1, 2, . . . , 8}.

Thus, the calculation of the NURBS control points
−→
P i,j works as follows.

The index i is looped in an outer loop. For each i a t1 is calculated (t1 = i/8).
With this t1 the control point path center point C is calculated (in the (x, y)-
domain). For the obtained Cx another t2 is calculated that corresponds with a
value in the correct arm of the radius path. Evaluating this t2 gives an interim
radius ri. Looping the index j in an inner loop, evaluation of ri leads to rCP and
fills the control point ring. Then this ring has to be converted to the (x, y, z)-
domain by rotating it around its diameter about an angle corresponding to the
slope of the control point path at the current i/8 and moving it to C.

Now for the weights wi,j . Their values shall depend only on j. With an
additional factor rrect representing ”rectangularness” they can be defined as
follows:

wi,j =

{

1.0 −j even

frect

√
2/2 −otherwise

.
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Name Value range Comment

l 2.0..5.0 length scale factor (unit: meter)
fdist 0.01..1.0 P1,x = fdist cos(δ + γ)

P1,y = fdist sin(δ + γ)
δ = 4◦- tilt angle of receiver aperture

P2,x 0.0..0.8
P2,y -0.1..0.1
P3,y -0.3..0.3 P3,x := 1
R1,x 0.1..0.7
R1,y 0.1..1.0
R2,x 0.2..0.9
R2,y 0.1..1.0
R3,y 0.1..3.0 R3,x := 1
fprox 0.01..0.99
fo,entr 0.5..2.0 fo = tfo,entr + (1 − t)fo,exit

fo,exit 0.5..2.0 dto.
fs 0.1..1.0
γ -10.0..10.0 relative tilt angle (unit: degree)
frect 0.8..5.0

Table 2: Parameter space of the NURBS-based secondary reflector shape for the test appli-
cation

All of this sums up to the following 16 parameters that are varied within the
listed limits during the adaptation of the secondary concentrator shape for the
test application (see table 2).

6. Parameterization and setup of alternative shapes

In an effort to judge the optical performance of the designed NURBS-based
secondary concentrator, alternative designs are also considered and compared
to the NURBS solution. The obvious choice is the compound parabolic concen-
trator (CPC) suggested by Winston (1974) (see also Winston et al. (2005)).

As it proved not to be trivial to find a correct surface equation for this
concentrator shape, the one used in this contribution is stated here (without
derivation).

A parabola that forms one boundary arm of a CPC in two-dimensional space
with half acceptance angle α and exit aperture radius a has the focal length f :

f =
a

2
(1 + sin α). (21)

When a coordinate z runs along the symmetry axis of the CPC, starting
from the exit aperture plane, the radius r(z) of the CPC is:
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Name Value range Comment

α 20.0..65.0 max acceptance half angle (unit: deg)
2a 0.5..4.0 diameter of the exit aperture (unit: m)
γ 0.0..45.0 relative tilt angle (unit: degree)

Table 3: Parameter space of the CPC secondary reflector shape for the test application

r(z) =
√

x2
0 + (y0 − f)2 − z2, with (22)

x2
0 = −8f tan α

√

kfz + (tan2 α + 1)f2 + 4kfz + 4(2 tan2 α + 1)f2

k = sin α tan α + cosα

y0 =
1

4f
x2

0.

Introducing two coordinates (x, y) to describe the position within each cross
section plane parallel to the exit aperture plane, one can replace r in eq. (22)

using the identity r =
√

x2 + y2 which yields the surface equation.
Trying to find a CPC that best fits the test application, the parameters listed

in table 3 have been varied within the given bounds. Much like the NURBS-
based concentrator, the CPC has also been allowed to be tilted with respect
to the receiver aperture plane. In both cases either the topmost or the lowest
point of the secondary concentrator exit aperture has been required to touch
the receiver. Whenever the relative tilt angles γ are non-zero, this leads to an
intersection between the receiver plane and the secondary reflector. In that case,
the area of this plane has been used as Arec to calculate the emission losses (see
eq.(20)). However, the relative tilt angle has never been allowed to grow such
that the intersection plane would also have touched the entrance plane of the
concentrator as this would have changed the topology of the concentrator from
”tube” to ”open mirror”. Of course the same cost function as in the NURBS
case has been applied.

In addition to the CPC, a receiver without any secondary concentrator has
also been calculated, i.e. adapted to the test application scenario. The only
parameter varied in that case was the diameter of the receiver aperture.

7. Adaptation and simulation results

Using the simulated annealing algorithm sketched in Press et al. (2002)
(see §10.9 p. 448ff), the parameters listed in tables 2 and 3 have been var-
ied within the given bounds and the resulting CPC- and NURBS-based sec-
ondary reflectors were used in the test application. The estimated annual yield
as outlined in section 4 served as cost function. Both the ray tracing and the
parameter search have been coded manually in Object Pascal and compiled to
a multi-threaded native executable. About 1500 epochs were necessary for each
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search run in the NURBS-based shape case and roughly 300000 rays were traced
for each cost function evaluation. Consequently, one search run took in the or-
der of several days on a single PC with two CPUs clocked with 3.2 GHz and
hyperthreading turned on.

The best shapes found for both cases are listed in table 4 and depicted in
fig. 3. Additionally, figures are given for the case when no secondary reflector
at all is used in the test application.

As can be seen, the NURBS-based shape performs best. It leads to sig-
nificantly more annual yield than the CPC secondary reflector. Observing the
even lower yield estimated for the first case, it can be concluded that using a
secondary reflector obviously is advantageous.

The concentration ratio is the entrance aperture area of the secondary re-
flector divided by the exit aperture area. ”Max. semi-angle” is the maximum
angle between an incoming ray (that eventually hits the receiver) and the en-
trance aperture normal of the secondary receiver. While the receiver area, i.e.
the radiating area Arec, is the same for both reflectors, the concentration ratio
of the NURBS-based shape is higher than that of the CPC indicating that the
NURBS-based shape collects more of the radiation emitted by the heliostats
than the CPC. This is remarkable because the acceptance angle of the NURBS-
based shape is also much higher than that of the CPC.

Put in numbers, the NURBS-based shape collects about 95% of all rays
that leave the heliostats. And about 93.6% of these rays leave the concentrator
through the exit aperture, i.e. get absorbed by the receiver. The 300000 rays
that cross the entrance aperture lead to roughly 400000 reflections inside of the
concentrator, giving an average of about 1.3 reflections per ray. Thereby more
or less the entire reflective surface gets touched by a ray at least once.

8. Summary and conclusion

In this contribution it is shown how NURBS free form surfaces can be used
to mathematically describe and model active, i.e. reflective surfaces in optical
systems. Transforming the virtually unlimited variety of possible shapes into an
application-specific subspace by means of a model with few parameters paves the

Case Receiver

area

Conc.

ratio

Max.

semi-

angle

Estimated

annual

yield

No secondary
reflector

1.54 m2 1.0 - 1210 MWh

CPC 1.50 m2 1.23 31.4◦ 1580 MWh

NURBS-based
shape

1.50 m2 1.5 60.7◦ 2180 MWh

Table 4: Simulation results after adaptation
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Figure 3: The adapted secondary concentrators: CPC (left) and NURBS (right)

way towards automated design of optical devices based on NURBS surfaces. It
is proved by demonstration that this is feasible on modern personal computers.

For a specific test application, a secondary reflector based on a NURBS
shape is designed and compared to a CPC secondary concentrator. It turned
out that the specifically designed NURBS-based shape outperforms the CPC
shape.
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