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1.  INTRODUCTION 

The experience gained during the last three decades in developing applications of concentrated solar 

energy shows that higher conversion efficiency of solar energy to electricity can be achieved only at high 

temperatures (more than 1100 K) (Segal and Epstein, 2000).  At these temperatures, the radiation 

emitted from the receiver at the working temperature becomes the main mechanism of thermal losses 

depending on the size of the receiver aperture.  It is obvious that, in order to increase the receiver 

efficiency, the solar energy must be introduced into the receiver at higher concentrations.  To reach high 

concentrations at the receiver aperture it may not be sufficient to improve the performance parameters of 

the primary concentrator (the field of heliostats), but a secondary concentration is often required.  As any 

optical device, the secondary concentrator has its own inherent losses, which reduce the total optical 

efficiency.  Introducing the secondary concentrator has a substantial effect on the optimal shape, size and 

arrangement of the primary concentrator.  The receiver coupled with its secondary concentrator, i.e., the 

receiver concentrator (RC), is a Compound Parabolic Concentrator (CPC) type (Winston et al, 

2005).  This optics has been first published by Segal and Epstein (1997). It becomes a combined unit, 

where both the thermal and the additional optical losses have to be analyzed and considered (Segal and 

Epstein, 1999a). 

 Other important losses in a thermal system are those associated with the heat transport from the 

solar receiver to the energy converter (e.g., a gas turbine).  In order to minimize these losses, the turbine 

is installed close to the receiver.  In usual large solar power plants, the receiver and the turbine together 

with auxiliary equipment are heavy burden to be supported on the top of a tower structure.  An 

alternative option is to invert the path of the solar rays originating from a heliostat field in a way that the 

solar receiver and the above equipment can be placed on the ground.  In order to carry out this optical 

path inversion, a supplementary reflector has to be installed.  This causes the rays oriented to the aim 

point of the field to be reflected down to the RC entrance located near the ground.  From an optical point 

of view, only a reflective surface having two foci is capable of this mission, namely, each ray that is 

oriented to one of its foci (which coincides with the aim point of the heliostat field) will be reflected to 

the second focus positioned at the entrance plane of the RC.  From mathematical point of view, this 

surface is a quadric, namely, a hyperboloid (with two sheets, of which only the upper one is used), or an 

ellipsoid.  A hyperboloidal mirror placed at a certain distance below the aim point of the heliostats, can 

achieve this goal.  Similarly, an ellipsoidal mirror placed at certain height above the aim point can 



provide comparable results.  The performances of these two types of reflectors have been compared by 

Segal and Epstein (2001).  The comparison shows that the hyperboloidal surface is definitely more 

effective than the ellipsoidal one, so that we will consider further only a hyperboloid mirror. This optical 

system based on this hyperbolic mirror as reflector of the rays back to the ground is named Tower 

Reflector (TR), also using the name Beam-Down (BD) for the entire optical system. 

The present work describes our experience accumulated along two decades in optimization of a heliostat 

field used for the classical tower optics (Section 3) as starting point for the description of the 

methodology used for optimization of heliostat field in the frame of BD optics (Sections 4-6).  

  

2.  MATHEMATICAL BACKGROUND 

 A ray of light can be described mathematically as a straight line as follows: 

zukizzyukiyyxukixx        ;      ;    (1) 

where:  (xi, yi ,zi) are the coordinates of the origin of the ray (on the surface of the heliostat) and (ux, uy, 

uz) are the components of the ray's unit vector of direction.  This ray is intersected with the reflective 

surface (hyperboloid) having the following general equation: 
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where:  xp=x–xo, yp=y–yo, zp=z–zo, subscript o represents the quadric center and subscript c represents 

the center of the secondary concentrator entrance, in the tower system coordinates (x,y,z), a and b being 

the hyperboloid semi axes. The surface described by Eq. (2) has been written in a general way, including 

the option to tilt the axis of the quadric surface in the yOz plane (this is the north-south plane because 

the axis Oy is supposed to be oriented to the north) (see Section 3). The coordinates of the point of 

intersection between the ray and the reflector surface, (xs,ys,zs), are obtained by solving the system of 

Eqs.(1) and (2) for the parameter k.  The normal at the point of the intersection to the particular surface 

is calculated by solving the following partial derivatives: 
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 Finally, the reflected ray has the direction u
r
 with the components: 
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 The intersection between the reflected ray and the entrance plane of the RC is calculated by 

substituting in the system of Eq. (1) the coordinates (xs,ys,zs) of the intersection point on the reflector 

surface, the direction of reflected rays u
r
 and solving for k the equation zc=zs+kuz

r
, zc being the z 

coordinate of the RC entrance.  The coordinates xc and yc in the entrance plane to the RC are 

consequently calculated by Eq. (1). 

 Numerical results of the calculations and assumptions used as a basis for them are depicted later for 

various practical cases. 

 

 

Fig. 1 Beam Down optics 

 

3.  THE PRINCIPLES OF A TOWER REFLECTOR 

A tower reflector is an optical system comprised of a hyperboloidal mirror (with two sheets; the focal 

line is vertical; only the upper sheet is considered in this optical system) where the upper focal point 

coincides with the aim point of a heliostat field and its lower focal point is located at a specified height, 



coinciding with the entrance plane of the RC on the ground level (Fig. 1).  This system was proposed by 

Rabl (1976) and further investigated by Winter et al. (1991), and, at the Weizmann Institute of Science, 

by Epstein and Segal (1998), Kribus et al. (1997, 1998), Yogev et al. (1998), Segal and Epstein (1997, 

1999a,b, 2000, 2001). The beams from the heliostats are reflected downward by this mirror.  The optics 

of a tower reflector requires the use of the RC if high concentrations are desired, because the quadric 

surface mirror always magnifies the sun image.  The magnification is defined here as the ratio between 

the image diameter at the second focal plane and the image diameter at the aim point of the heliostat 

field.  This magnification is a function of the ratio of the distances between the mirror vertex to the 

upper and to the lower foci (Fig. 2  M vs. f2/f1).  Evidently, this function is linear in a large range of the 

ratio f2/f1.  In a two-dimensional model, the linearity is absolute for the entire range but, in a real three-

dimensional model, the linearity is perturbed by the image distortions caused by the aberrations 

occurring at a smaller f2/f1 ratio.  The magnification depends also on the ratio between the radius of the 

field and the height of the aim point.  It decreases as the radius of the field increases for the same height 

of the aim point (Fig. 3), although for a larger field, the image diameter at the aim point is larger due to 

the larger distance to the last row of heliostats. 

 

Fig. 2 Image magnification in lower focus function of ratio f2/f1 
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Moving the hyperboloidal mirror down, towards the lower focal point causes the size of the image to be 

smaller.  However, this displacement results in two undesirable effects (Fig. 4).  In the case of 

hyperboloidal mirror, the size of the reflector increases as its height above the heliostats is decreased.  

The acceptance angle of the rays arriving to the ground RC is also increased.  The acceptance angle 

determines the ability of the RC to concentrate the radiation arriving at its entrance (Welford and 

Winston, 1989)..  One can define fh = f2/(f2+f1) as the fractional position of the vertex of the hyperboloid 

from the height of the aim point (assuming that the lower focus of the hyperboloid is at the heliostat 

level), obviously ½ <fh<1. 

 It will be shown that the optimal position of the tower reflector (defined as location that produces 

the maximum concentration at the receiver entrance) is found between fh=0.75 and fh=0.85.  

 

 

 

 

 

 

 

 

 

Fig. 3 Optical behavior of hyperboloid mirror 

 

Fig. 4 Magnification of image vs. ratio f2/f1 for different field radii 
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Fig. 5 Upper mirror axis is tilted when the field is asymmetric  

 

 In the Northern Hemisphere, at a typical latitude range of 2535, the heliostats are arranged in a 

northern field or, in the case of a large surrounding field, the northern part is usually larger than the 

southern part.  In these cases the quadric axis must be tilted if a vertical position of the RC is requested 

(Fig. 5).  For a hyperboloidal mirror, this tilt is made by moving slightly the lower focus in the northern 

direction relative to the aim point.   

An optimum position exists for a reflector that maximizes the receiver efficiency.  As illustrated in Fig. 

8, the optimum situation occurs when the edge rays from the heliostat field, after reflection from the 

tower mirror, coincide exactly with the edge rays of the RC.  Mathematically, a new concept can be 

introduced:  transformation by reflection from a quadric surface.  The optimum is achieved when the 

volume in phase space (Winston et.al, 2005) of the rays leaving the heliostats is equal to the volume in 

phase space of the reflected rays arrived to the RC. Fig. 6a shows the acceptance angle, the entrance 

radius of the RC and its exit radius, as a function of the reflector position, fh, for the specific example of 

the small field (Segal and Epstein, 1999a).  The maximum average concentration level at the receiver 

aperture is obtained when the ratio fh [=f2/(f1+f2)] between the distance from the apex of the mirror to 

the lower focus and the distance between the two foci is equal (in this particular case) to 0.73.  

Nevertheless, as shown below, the highest concentration is only an indication of the maximum 

efficiency.  This position does not provide automatically the optimum for the receiver efficiency.  Only a 
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detailed calculation for optimization, as presented by Segal and Epstein (2000), will result in a position 

that assures the highest receiver efficiency. 

Fig. 9b shows the situation where two different aim points for the heliostat field are considered.  For the 

higher aim point, the RC’s acceptance angle is smaller for the same relative position fh (equivalent to 

the same ratio f2/f1) of the hyperboloidal mirror.  As already discussed, the same f2/f1 implies the same 

magnification, but, because the virtual image at the aim point is larger for the higher aim point, the 

image at the entrance of RC will be larger in the case of higher aim point (Fig. 6b), and, as a result of 

combination of the radius of this image and the corresponding acceptance angle, the exit radius from RC 

will have approximately the same dimension.  Therefore, the height of the aim point has almost no 

optical influence on the possible concentration observed in these cases.  In this analysis we considered 

only the optics of the tower reflector and the RC (as an ideal device).  Moreover, a higher aim point has 

the general advantage of lower blocking and shadowing in the field of heliostats; as a result, more energy 

will arrive to the receiver when using a higher aim point.  In any case, in order to find the optimal 

position of the reflector, its height is varied according to a certain strategy.  For each position, the 

optimal geometry of the RC is established following the method described by Segal and Epstein (1999b).  

A particular case is worth mentioning.  This is when the mirror is positioned at exactly equal distance 

between the aim point and the entrance plane of the RC (fh = 1/2).  In this case, the hyperboloid 

becomes a flat mirror, the magnification is 1 and the aim point image is exactly reflected to the RC 

entrance plane.  This option is not practical because the radius of the mirror will be half of the heliostat 

field radius, and therefore, this choice is disregarded. 

 The energy flux distribution of the sun image at the entrance plane of the RC (the lower focal plane) 

has a peak at the center (Fig. 7).  As one moves radially from the center to the edges of the image, the 

flux decreases.  Attempting to capture the entire image into a single RC will results in diluting the 

average flux at its entrance.  This is disadvantageous from a thermodynamic point of view.  Since the 

reflective tower magnifies the sun image at the RC entrance plane, a single concentrator capable of 

collecting most of the energy will have a large opening and the losses by reradiation will be high.  

Therefore, the optimization method, as described in the next section, is aimed at reducing the size of the 

RC opening, accepting some increasing of the spillage losses.  A possible solution was proposed by Ries 

et al. (1995) for exploiting the edge part of the image for lower temperature applications or for 



preheating purposes, while the central portion of the image can be used for the topping of the 

thermodynamic cycle.  This approach can increase the total efficiency of a power conversion system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                      Fig. 6                                                                             Fig. 7 

 

Fig. 8 illustrates the flux distribution at the RC entrance plane and the power that can be absorbed by the 

receiver as a function of the distance from the center, for the two positions of the TR, as depicted in Fig. 

4a and 4b (fh=0.9 and fh=0.6, respectively).  As expected, when the reflector is in a lower position, the 

flux decreases sharply with the distance from the center of the image.  As a result, the radii of the central 

collector and preheaters are relatively small, compared with the situation where the hyperboloid is in a 

higher position.  But this is not the only parameter that determines the hyperboloid position.  A large 

reflector area means a lower average (and peak) flux on the reflector itself.  In addition, the partition 

between the size of the central RC and the peripheral preheaters, as well as their acceptance angles, are 

subject to an optimization search aimed at maximizing the efficiency of the entire system (Segal and 

Epstein, 1999a, b, 2000). 

 The criterion for this optimization can be the maximization of the receiver thermal efficiency 

(defined as the ratio between the net power delivered to the thermal process and the total power arriving 

at the RC's entrance plane) (Segal and Epstein, 1999a), or, if economic parameters are introduced, the 

minimization of the cost of kilowatt thermal power absorbed by the receiver.  In either case, the 

concentration at the receiver entrance is only an indicating parameter for better efficiency but not the 

ultimate criterion for optimization. 
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Fig. 8 Flux and power collected vs. collector radius 
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Fig. 9 Dependence of flux and power collector to aim-point height 
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4.  THE METHODOLOGY FOR HELIOSTAT FIELD OPTIMIZATION BASED ON BEAM 

DOWN OPTICS 

4.1 The optimum boundary for a surrounding field 

The BD optics has been successfully used recently for testing in different projects at the Weizman 

Institute of Science. There is currently sufficient data on this technology to evaluate its up-scaling for 

commercial uses. 

The sizing of a TR is directly linked to the layout of the heliostat field and the geometry of the ground 

secondary concentrator (CPC). It depends on its position relative to the aim point of the field, amount of 

spillage around it and the allowable solar flux striking the TR. Its position influences the size of the 

image at the entrance plane of the ground CPC and the spillage around the CPC aperture. The spillage 

around the CPC is also directly related to the exit diameter of the CPC (equal to the entrance opening of 

the solar reactor, matching the CPC exit) and therefore linked to the input energy concentration, thermal 

losses and working temperature in the reactor. Restrictions on the size of the exit of the CPC can 

influence the entire design of the optical system. But an optimized heliostat field is an essential part of 

BD optical system and we have enough experience to build such field. The methodology for construction 

of the corresponding field layout will be exposed in this Section. 

 

Fig. 10 Symmetrical circular surrounding field (non-optimized) 



 

A symmetrical circular surrounding field (Fig.10) is not optimized since the southern heliostats are less 

effective (in the Northern Hemisphere) than the northern heliostats and therefore a real surrounding field 

will be shifted from the center to north and stretched in the north-south axis to form an elliptical shape. 

But this layout can be seen as the first iteration for finding the best corresponding field. A number of 

methods for optimization of the large fields have been proposed in the past (Lipps and Van’t Hull, 1978) 

A recent attempt is by Sanchez and Romero (2006), where the arrangement of the heliostats is starting 

with the first row and supplementary rows are added so that the normalized annual energy is maximized. 

In this method the rapprochement of heliostats below the mechanical limits is refrained by introducing a 

void ring between two consecutive rows of heliostats (see also WinDelsol (2002)). 

The optimal design of a collector heliostat field involves determining the optimal location of each 

heliostat in the field and the boundary contour of this field so that the daily, monthly or annually 

performances of the entire field will optimally meet the requirements. 

In general, the figure of merit used for this optimization is the ratio of the total system cost to the total 

energy delivered by the whole system. In this case, the optimization will consists in finding the 

minimum for this figure of merit. Referring to the optimization of the collector field subsystem, the 

previous figure of merit is equivalent to the maximization of another figure of merit which is the average 

energy delivered by a single heliostat from the field. (This approach ignores in the first approximation 

the cost of the land and the wiring). In order to calculate this average energy per heliostat, the 

coordinates of each heliostat in the field must be determined. At the same time, this optimization cannot 

be independent of the optimization of the balance of the central solar plant, especially the height of the 

tower/aim- point. This is important data input for the optimization of the collector subsystem. Therefore, 

we will express all the lengths in the field in units of tower/aim-point height (in other words the tower 

height is equal to one unit length UL) 

The azimuthal distance and radial separations can be determined by various empirical correlations 

given by Kistler (1986) or Winter et al. (1991) These correlations, although mathematically are not 

likewise, give very closed results. For a given field (i.e. the exterior boundary is fixed at rmax
) we found 

that both these correlations leads to remarkable linearity (more than 98%, as can be seen in Fig. 11a) 

between the radial separation and the distance to the tower: 

         r u r v hl   ( )            (5) 



where u and v are functions of rmax and hl is the typical heliostat dimension. A graphical dependence of 

these functions vs. rmax is shown in the Fig. 11b. 
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Fig. 11 Linear coefficients from eq.(5) vs. field radius 

 

 

The criterion of optimization is the maximization of the annual solar contribution of an average heliostat 

into a virtual receiver aperture. This aperture is circular, placed in horizontal plane and centered relative 

to the field’s aim-point. Considering a field with exterior boundary having three parameters: u, v and w 

(w being the azimuth separation between two neighboring heliostats in the farthest row) and based on the 

radial linear separation given by (Eq. 5) and radial staggered layout with slip planes [13], the entire field 

is completely and precisely defined from the farthest row inwards, to the closest row to the tower 

reflector. Free space around the tower is allocated not only for optical reasons, but also for technical 

requirements. 

The method proposed by Segal and Epstein (1996), Segal(1999),maximizes the ratio Et / Nh, where Et is 

the total annual energy delivered to the target and Nh the number of heliostats in the field. Initially, the 

field is assumed circular and sized to deliver power larger than the nominal specified power at the design 

point. This requires an optimization in three dimensions (u, v, w) which can be solved assuming the field 

is built based on the above described algorithm. The result is an optimal field configuration with 

maximum average contribution of each heliostat integrated over the year and having the power at design 

point larger than the required nominal power. Fig. 12 presents the isoenergetic curves of annual 

contribution of each heliostat in the whole field relative to the most efficient heliostats designated with 

efficiency equal to 1. Array of the less efficient heliostats in the field is established in the inverse order 



of their contribution and, finally, the heliostats with the lowest annual energetic contribution are 

eliminated until the desired power is achieved at the design point. The remaining heliostats configure the 

optimal field. In the last step a slight compromise is made to shape the field in compliance with the most 

appropriate elliptical boundary. This boundary has its center shifted by a certain distance to North 

relative to the tower reflector [15]. 

 

 

Fig. 12 Isoenergetic curves of annual contribution of heliostats 

 

4.2 Dimension of tower reflector and ground concentrator 

As described in the previous section, the field boundary is fixed after the optimization process to match 

the nominal power requirement. Adopting the definitions outlined in Section 3, the sizing of the tower 

reflector and the ground CPC can be best illustrated through the following specific example. A field 

having an elliptical boundary is assumed, having semi-axes of v = 2.8*UL on South-North axis and w = 

2.2*UL on the East-West axis. Also the center of the ellipse boundary is shifted by e = 0.8UL north to 

the vertical line drawn from the aim-point (see fig.13 where UL=100m). In addition, as described by 

Segal and Epstein [15], in such a field, the tower reflector axis must be tilted so that the hyperboloid 



lower focus is moved north relative to the vertical from the aim-point (upper focus) in order to preserve 

the verticality of the CPC cluster. 

The equation of a hyperboloid having the Oz axis tilted with the angle τ with the vertical can be written 

as: 
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where: t = tan τ ; θ
2
 = 1 + t

2
 ; ξ = (t

2
-θ) /2 ; η = (1+θ) t /2 ; a, b being the hyperboloid semi-axes 

defined as in Section 2 

Similar to the procedure developed in Section 2, a generic point P is determined on the field boundary 

having the coordinates (xo,yo,zo), where 2/12

0

2

0 )( xv
v

w
ey   and zo= -d. A straight line PA, connecting 

P and the aim point A, intersects the upper sheet of the hyperboloid (Eq. 6). The intersection of a 

reflected ray from this point on the hyperboloid with the lower focal plane is calculated. The image of 

the field boundary on this plane will be also an ellipse centered at y = t = tan τ. When varying the tilt 

angle τ, namely moving the position of lower focus to North, it can be observed that the elliptical image 

becomes close to a circle and the incidence angle of the rays originated from the various points P on the 

field boundary and reflected by the TR approaches the same value. In this point, the position of the CPC 

cluster will be vertical as desirable. 

 

The reflective area of the entire heliostats field can be calculated by: 

  )( 2

vref rwvA       (7) 

The TR area as a fraction of the heliostat reflective area (S/Aref) can be easily calculated now. 

In order to evaluate the dimension of the sun’s image at the ground CPC entrance plane after being 

reflected by the heliostat field and by the TR, one should consider the sun disk with its semi-angle Δs. 

The calculations are done for a bundle of rays originated from each point on the boundary of the field. 

The results of the image radius at the CPC entrance plane which includes e.g. 95% of the arriving rays 

and a corresponding acceptance angle are presented in Table 2. 

This CPC can collect and transmit at least 95% of the power reaching its entrance plane. In the example 

indicated above (when f = 0.8), the entrance radius of the CPC will be 0.0482 units and the acceptance 

angle 24°, which correspond to an exit radius of 0.0196 units. As previously discussed [8], for large 



fields the exit aperture of a single CPC could be too big for specific application, and therefore a practical 

solution can be the use of a cluster of seven identical CPC units: one central and six peripherals that will 

intercept at least 95% of the full image at the CPC entrance plane. In the case of seven CPC units, each 

of them has the entrance radius 0.0187UL, exit radius 0.0073UL and height of 0.0614UL. The total 

reflective surface area of this cluster will be SCPC = 0.072 UL
2
. This area is calculated as a fraction of the 

field reflective area (SCPC / Aref = 1.4%). Shown in Table 1 is this fraction, calculated for different values 

of f (0.5< f <1). 

Table 1 

fh Tilted 

angle 

(
o
) 

ri 

(UL) 

zi 

(UL) 

rs 

(UL) 

zs 

(UL) 

S 

(UL
2

) 

S/Aref 

(%) 

acc 

(°) 

CPCr 

(UL) 

CPCex 

(UL) 

hCPC 

(UL) 

ACPC 

(UL
2

) 

ACPC/ 

Aref 

(%) 

0.65 9.6 0.1792 0.6602 0.5622 0.7319 0.910 17.2 49.0 0.0266 0.0201 0.0406 0.012 0.2 

0.70 9.7 0.1527 0.7108 0.4693 0.7863 0.639 12.1 39.5 0.0309 0.0197 0.0613 0.020 0.4 

0.75 8.6 0.1259 0.7604 0.3699 0.8288 0.397 7.5 31.0 0.0396 0.0204 0.0998 0.038 0.7 

0.80 7.5 0.0922 0.8079 0.2888 0.8700 0.249 4.7 24.0 0.0482 0.0196 0.1523 0.066 1.2 

0.85 3.9 0.0511 0.8536 0.2034 0.9028 0.130 2.4 17.5 0.0652 0.0196 0.2690 0.145 2.7 

0.90 2.7 0.0126 0.9004 0.1431 0.9432 0.069 1.3 12.0 0.0918 0.0191 0.5217 0.367 6.9 

Table 1. Optimized field: comparison between the results obtained by calculation for a real field of 

heliostats ri / rs – inferior / superior radius that delimits on the TR the illuminated surface;  zi / zs – 

corresponding heights of the illuminated surface limits;  acc – acceptance angle;  CPCr – CPC entrance 

radius;  CPCex – CPC exit radius; hCPC – CPC height; ACPC – total CPCs area 
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Fig. 13 Optimized heliostat field used as first guess in Sect.4.3 

 

4.3 Optimization of a real heliostat field based on beam-down optics. 

The field presented in Fig.13 is optimized following the method proposed by Segal and Epstein (  ), 

therefore it has the best row separation, also the azimuthal angles, as a result the shadowing and blocking 

will be reduced at minimum possible (at least at the Design Point), but it constitutes only the starting 

point for a concrete requirements. 

Let’s exercise the method of layout optimization on a concrete example: 

We will consider UL=100m. The target is a circle having area equivalent with the entrance area of 1+6 

CPCs having yet unspecified dimensions. The restriction is that each CPC will be connected with a 

receiver / preheater (identically) having total area equivalent with the area of in a circle of diameter 

0.1UL. The exit angle from CPC will be maximum 75
o
. A first guess gives for exit diameter from CPC 

to receiver / preheater will be 0.017UL. Supposing, also as first guess, the acceptance angle as 21
o
, we 

can calculate that the equivalent area of the entrance in 1+6 CPCs is 0.955UL
2
, corresponding at a 

diameter of 0.11UL. The optimized field of heliostats has to reach the input into equivalent circle of 

0.11UL (following named: target), (at least) 17MW at the design point (Equinox, Noon). Another 



important requirement is that the annual energy collected in this target must be at least 50GWh. 

Mentioned that the direct normal insolation is given for one day characteristic for each month, at each 

hour between 6AM and 7PM (matrix of 12x14 values). For the first guess, the vertex of hyperboloid is 

fixed at fh=0.8UL.  

As the first step, is calculated the power entered target at the design point, for various acceptance angles, 

and it is established the value of the CPC’s acceptance angle which maximize this power.  

The second step is to calculate the annual performances, i.e. the energy entered target along the year (for 

each hour between 6AM to 7PM, for each representative day per month, times the number of day in that 

month). The code calculates the energy collected due to each heliostat from the field represented in 

Fig.13.  

In the third step, the heliostats are arranged decreasing, accordingly to their energetic contribution. Of 

course the sum of energy given from the entire field from the Fig.3 is much larger than the requirement 

(50GWh). Therefore the code performs a sum of energetic contribution of each heliostat until a limit of 

50GWh. The layout of these heliostats is represented in Fig. 14. The heliostats included in this amount 

will mark the input field for the next step. In this field are included 2561 heliostats. The method of 

calculus used until now, is the ray tracing with a big initial number of rays. Increasing the number of rays 

used for trial, maybe the field can received a more smoothing boundaries, but the calculus is large time 

consuming and, for us, the fig. 14 give sufficient information to smooth the field and to arrive at the 

layout from the Fig.15. 

 

The last step is to establish finally the CPC’s dimensions based on annual performances that must be 

recalculated replacing the target circle with true heliostats. In order to cover all collector surfaces, the 

entrance in CPC is a hexagon as in Fig.16. 
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Fig. 14 Field resulted after classification of the best heliostats 
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Fig. 15 Smoothed field based on field presented in Fig.14 



 

Fig. 16 Ray traces at the entrance plane in CPCs cluster 

 

 

5. CONCLUSIONS 

The present report describes in detail the mathematical principles which constitute the basis for Beam-

Down Optics. In order to use this optics for central solar towers, few new requirements are imposed 

when an adequate heliostat layout has to be built. In the present, for this purpose, few codes working in a 

chain are used and the report presents the results that will be obtained in each step. Appropriate software 

that unified these codes in a single package is almost ready, but a user manual has to be written.  
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