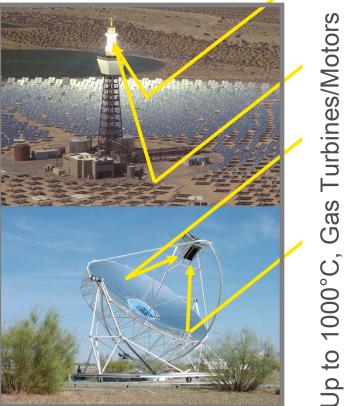
Linear Fresnel Collectors

A Technology Overview

SFERA Summer School 2012 June 28, 2012, Almería, Spain

Jan Fabian Feldhoff

E-mail: jan.feldhoff@dlr.de



Wissen für Morgen

Overview of CSP Systems Parabolic Trough Steam Turbines Up to 550 °C,

Linear Fresnel

Solar Tower

Dish-Stirling

Why a special session about Fresnel?

- Similar to parabolic trough, but...
- ... fixed receiver pipe while mirrors track
- ...trough shape "split" into multiple small mirror facets
- ...lower optical performance
- ...(probably) less expensive

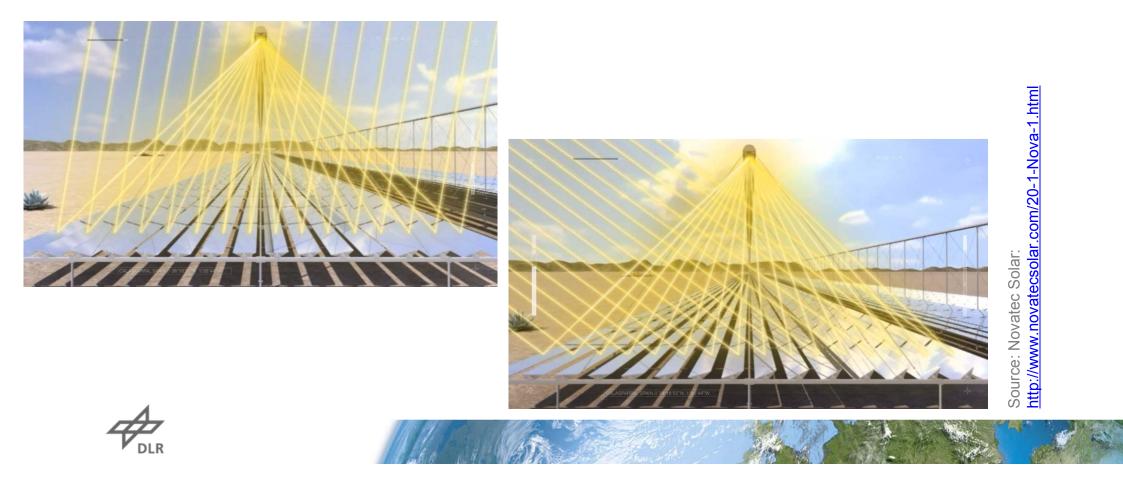
www.DLR.de/SF • Slide 4 > SFERA Summer School 2012 > Linear Fresnel Collectors > Fabian Feldhoff > June 28, 2012

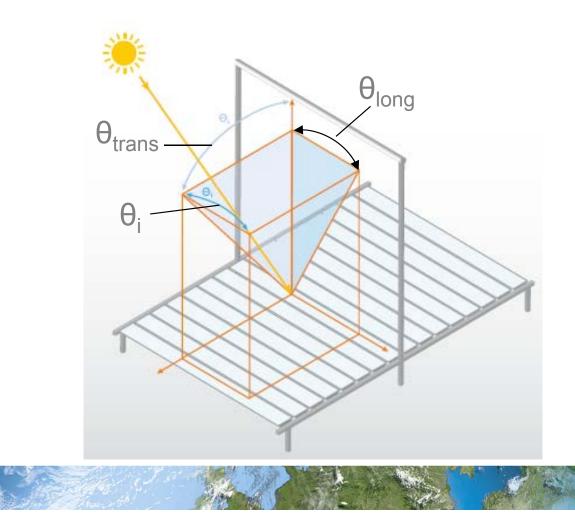
Overview

- 1. The Linear Fresnel Principle
- 2. Optical characteristics of Linear Fresnel Collectors (LFC)
- 3. Performance characteristics of LFCs
- 4. Components of LFCs
- 5. Overview existing LFC Plants
- 6. Outlook on LFC Developments
- 7. Final Remarks



Fresnel Principle


- Augustin Jean Fresnel (1788–1828), French Physicist
- Thin (low-weight and low-volume) lense for short focal lengths
- First application in lighthouses: to focus light horizontally and make it visible over greater distances


www.DLR.de/SF • Slide 7 > SFERA Summer School 2012 > Linear Fresnel Collectors > Fabian Feldhoff > June 28, 2012

Fresnel Principle > Linear Fresnel Collectors (LFC)

Optical Characteristics of LFC

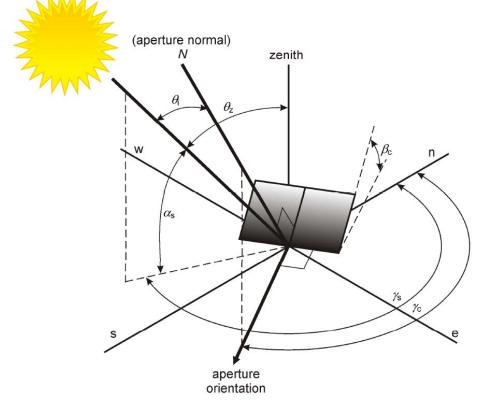
- Angle Definitions
- Calculation formula

www.DLR.de/SF • Slide 9 > SFERA Summer School 2012 > Linear Fresnel Collectors > Fabian Feldhoff > June 28, 2012

Solar Optics of LFC > Solar Angle Definitions

			_			
Solar azimuth	γs	0		The angle between North and the solar position pro- jected on the horizontal plane; $0^{\circ} \le \alpha_{s} \le 360^{\circ}$		
Solar elevation	αs	0		Vertical angle between straight line to the sun and hori- zontal plane		
Zenith angle	θz	۰	С	Complementary angle to α_s ; $\theta_z = 90^\circ - \alpha_s$		
Collector azimuth	Yo	۰	A	Angle between North and the aperture orientation		
Collector axis tilt	βc	0		Tilt angle between collector surface and horizontal plane; Usually $0 \le \beta_{\rm c} \le 360$		
Angle of incidence	θ	0		Angle between straight line to the sun and collector normal		
Declination		δ	0	Angle between sun beams and equatorial plane of th earth; Positive in summer (between end of march an end of September); -23.45° < δ < 23.45°.		
Hour angle		ω	0	Angle between the meridian of the observer and the meridian parallel to the sunbeams; Negative in the morning; 0 on solar noon; -180° < ω < 180°		

۰

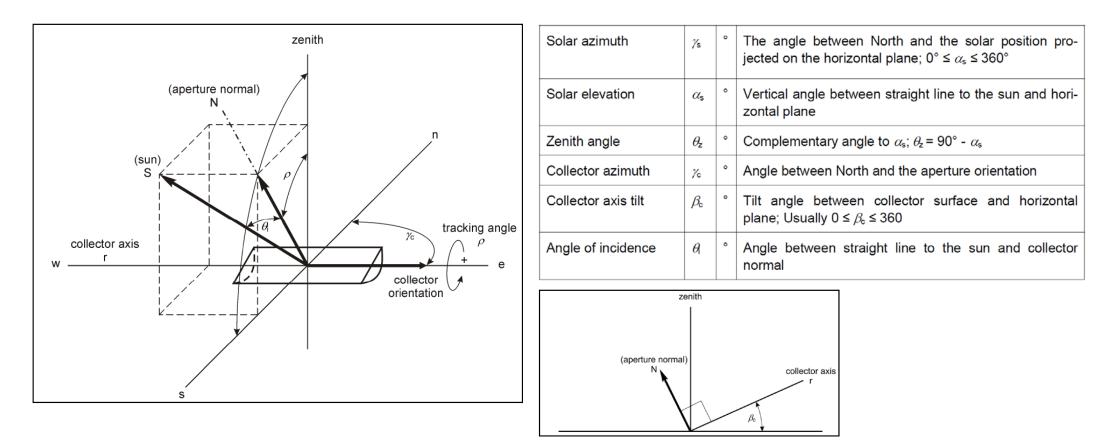

0

 ϕ

λ

Positive on the northern hemisphere; $-90^{\circ} < \phi < 90^{\circ}$

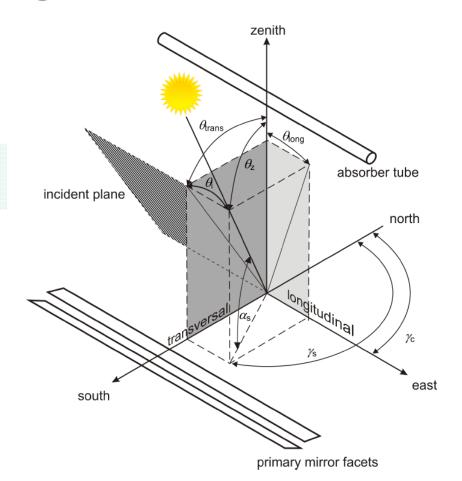
Positive eastward from Greenwich; -180° < λ < 180°



Geographic latitude

Geographic longitude

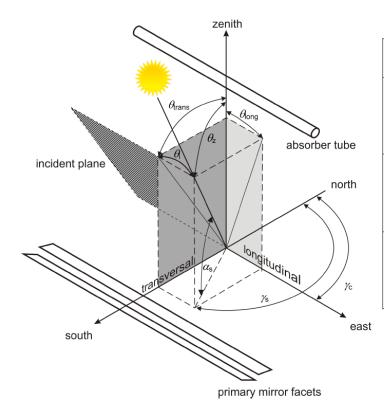
Solar Optics of Parabolic Trough Collectors



www.DLR.de/SF • Slide 11 > SFERA Summer School 2012 > Linear Fresnel Collectors > Fabian Feldhoff > June 28, 2012

Solar Optics of LFC > Main Angles

Transversal angle	$\boldsymbol{\theta}_{trans}$	Angle between zenith and projection of straight line to the sun into the transversal plane
Longitudinal angle	θ _{long}	Angle between zenith and projection of straight line to the sun into the longitudinal plane
Incidence angle	θ _i	Angle between straight line to the sun and section line of intersection between incidence plane and transversal plane


 Transversal and incidence angle are used to characterize optical behavior of LFC (since relevant optical effects are best described by these two angles)

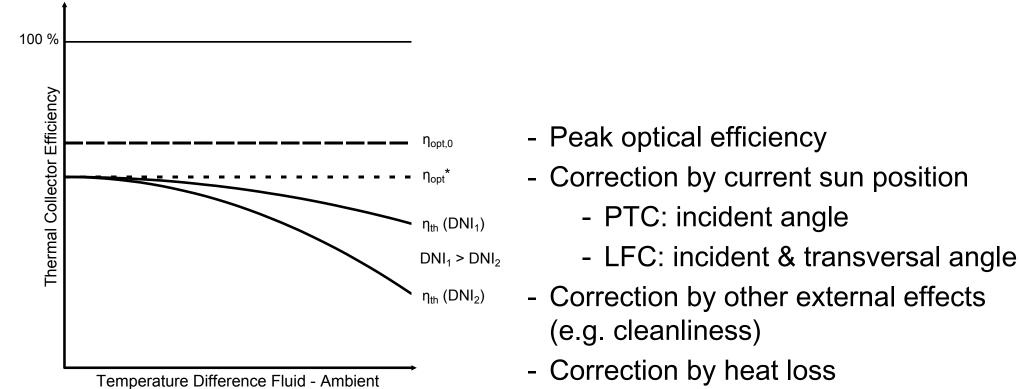
www.DLR.de/SF • Slide 12 > SFERA Summer School 2012 > Linear Fresnel Collectors > Fabian Feldhoff > June 28, 2012

Solar Optics of LFC > Angle Definitions

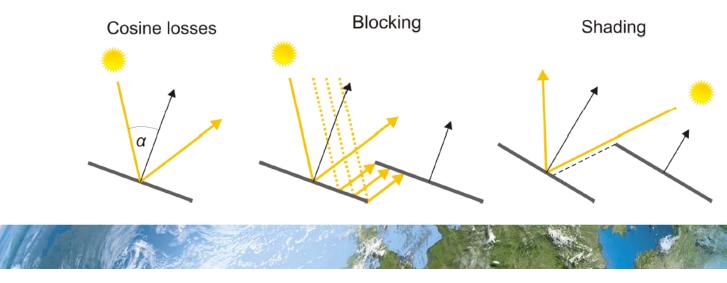
Orientation	Angle	Further Description in enerMena report, section III.4.			
arbitrary	$\cos \theta_{\rm I}$	III-12	$=\sqrt{1-(\cos(\alpha_{s}-\beta_{c})-\cos\beta_{c}\cos\alpha_{s}[1-\cos(\gamma_{s}-\gamma_{c})])^{2}}$		
	$tan \theta_{trans}$	III-13	$= \cos\alpha_{s}\sin(\gamma_{s} - \gamma_{c})/(\sin(\alpha_{s} - \beta_{c}) + \sin\beta\cos\alpha_{s}[1 - \cos(\gamma_{s} - \gamma_{c})])$		
North-south	cosℓ₁	III-14	$=\sqrt{1-\cos^2\alpha_{\rm s}\cos^2\gamma_{\rm s}}$		
	$tan \theta_{trans}$	III-15	$=\sin\gamma_{s}/\tan\alpha_{s}$		
East-west	$\cos \theta_{\rm I}$	III-16	$=\sqrt{1-\cos^2\alpha_{\rm s}\sin^2\gamma_{\rm s}}$		
	$ an heta_{ ext{trans}}$	III-17	$=\cos\gamma_{\rm s}/\tan\alpha_{\rm s}$		

Graphics and formulas taken from: H. Schenk, M. Eck: YIELD ANALYSIS FOR PARABOLIC TROUGH SOLAR THERMAL POWER PLANTS – A BASIC APPROACH, enerMENA report, DLR Stuttgart, March 2012. Available online soon: <u>www.dlr.de/enermena</u>

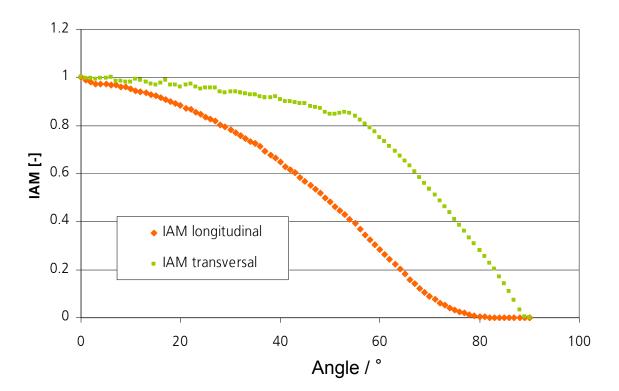
www.DLR.de/SF • Slide 13 > SFERA Summer School 2012 > Linear Fresnel Collectors > Fabian Feldhoff > June 28, 2012


Performance of LFC

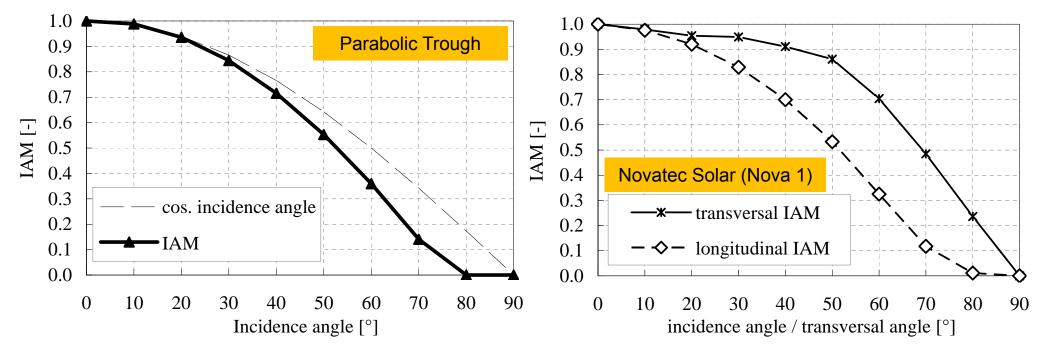
- Optical Efficiency
- Incidence Angle Modifier
- Heat losses/ efficiency
- Dependency on season
- Comparison with Parabolic Trough


Performance of LFC > Efficiency of a line focus system (LFC and PTC)

Performance of LFC > Optical efficiency

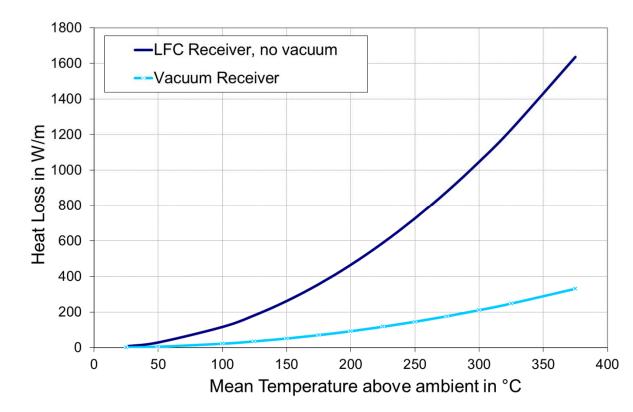

- Peak efficiency lower than for parabolic troughs due to
 - Astigmatism (mirrors on horizontal plane cannot reach ideal parabola)
 - Shading by receiver
 - Projected mirror surface
- At low sun position:
 - Shading
 - Blocking
 - Cosine losses

Performance of LFC > Incidence Angle Modifier


- Incidence Angle Modifier (IAM)
- $IAM = IAM_{long}^* IAM_{trans}$
- Longitudinal IAM usually function of incidence angle (not longitudinal angle): IAM_{long} = $f(\theta_i)$
- Usually derived from raytracing
- Includes cosine, spillage, shading, blocking etc.

Performance of LFC > Incidence Angle Modifier

- \rightarrow Longitudinal IAM similar for Parabolic trough and Linear Fresnel
- \rightarrow For Fresnel additional component due to transversal effects



Performance of LFC > Heat Losses

- Heat loss correlation usually given in [W/m]
- Receiver characteristic, independent from collector
- Recommended for vacuum receivers:

 $q_{loss} = c_1 T_{abs} + c_4 T_{abs}^4$

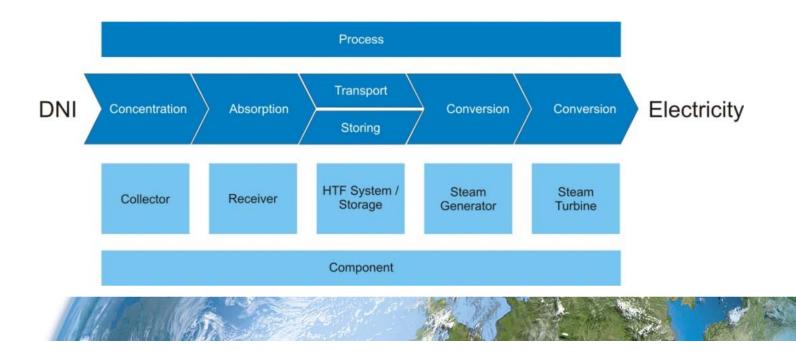
- For low temperature and non-vacuum T³ sufficient

Performance of LFC > Efficiency from Heat Loss

- Take coefficients from heat loss curve (c₁, c₄)
- Correct by DNI (or beam irradiance G_b) and aperture width w_{ap}
- For high temperatures
 - Use correction with T⁴ [T in $^{\circ}$ C] or at least T³
 - Use absorber temperature [1]
- DNI also has an effect on heat losses! See e.g. [2]

As a rule of thumb:

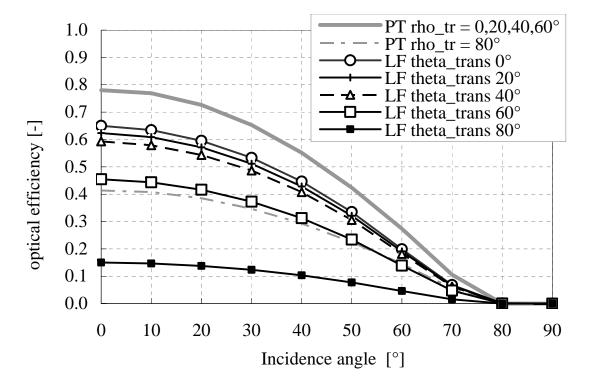
$$T = 100...600^{\circ}\text{C}: \quad \eta_{\text{therm,coll}} = \eta_{opt}^{*} - \eta_{HL} = \eta_{opt}^{*} - \frac{1}{DNI \cdot w_{ap}} \left(c_{1} \cdot T_{abs} + c_{4} \cdot T_{abs}^{4} \right)$$


$$T = 100...400^{\circ}\text{C}: \quad \eta_{\text{therm,coll}} = \eta_{opt}^{*} - \frac{a_{1}}{w_{ap}} \cdot \frac{(T_{fluid} - T_{amb})}{DNI} - \frac{a_{2}}{w_{ap}} DNI \cdot \left(\frac{(T_{fluid} - T_{amb})}{DNI} \right)^{2}$$

[1] Burkholder, F., and Kutscher, C., 2008, "Heat-Loss Testingof Solel'sUVAC3 Parabolic Trough Receiver," NREL/TP-550-42394 [2] Burkholder, F., and Kutscher, C., 2009, "Heat loss testing of Schott's 2008 PTR70 Parabolic Trough Receiver " NREL/TP-550-45633

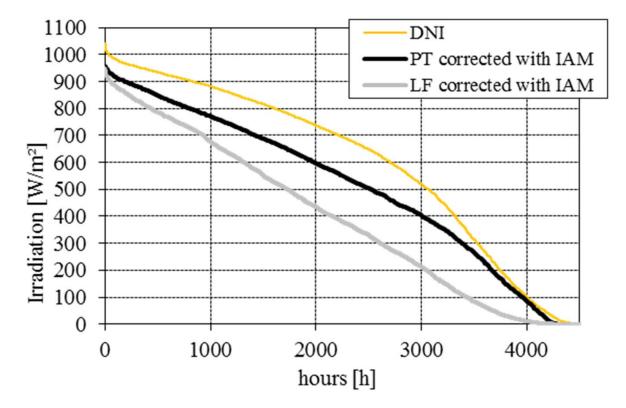
Performance of LFC > Annual Yield Modeling

- Analog to parabolic trough plants, only considering different IAM
- Repeat for various years and "typical meteorological year", since highly dependent on DNI distribution and location
- see latest activities of guiSmo project for more details: <u>http://www.solarpaces.org/Tasks/Task1/modelingguidelines.htm</u>


Comparison with PTC > Study Overview

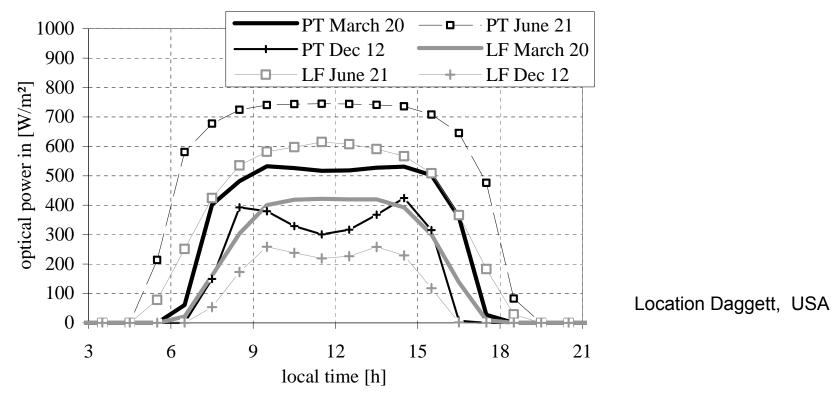
- Some selected studies:
 - Dersch J., M. G., Eck M., Häberle A., 2009, "Comparison of linear Fresnel and parabolic trough collecor systems system analysis to determine break-even costs of linear fresnel collectors," SolarPaces 2009, Berlin.
 - Morin, G., Dersch, J., Eck, M., et al., 2011, "Comparison of Linear Fresnel and Parabolic Trough Collector power plants," Solar Energy, pp. 12.
 - Giostri, A., Binotti, M., Silva, P., et al., 2011, "Comparison of two Linear Collectors in solar thermal Plants: Parabolic Trough vs. Fresnel," ASME 2011 5th International Conference on Energy Sustainability, Washington, DC, USA.
 - Schenk, H., Hirsch, T., Feldhoff, J.F., et al., 2012, "Energetic comparison of Linear Fresnel and Parabolic Trough Collector Systems," ASME 2012 6th Int. Conference on Energy Sustainability, San Diego, CA, USA. (to be released in July 2012)

Comparison with PTC > Optical performance

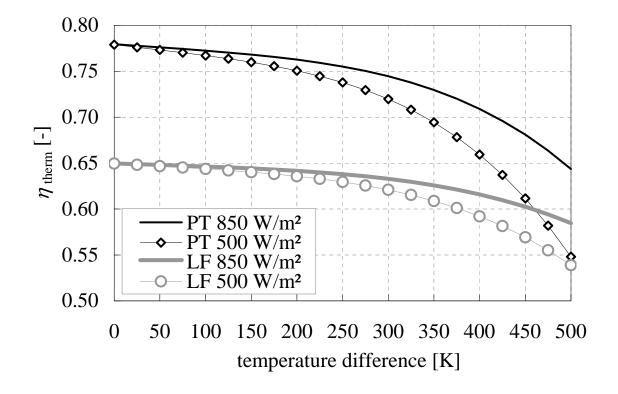


- Scaled EuroTrough PTC vs. Novatec LFC
- Both with vacuum absorber

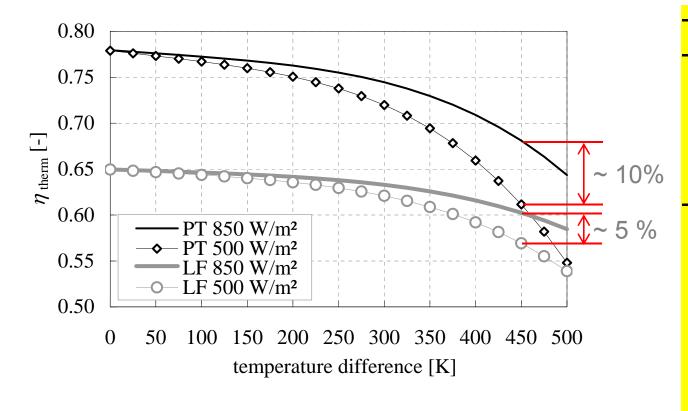
 \rightarrow Optical performance of Fresnel lower especially at low sun angles


Comparison with PTC > Optical performance

- Include optics in site characterization for line focus systems

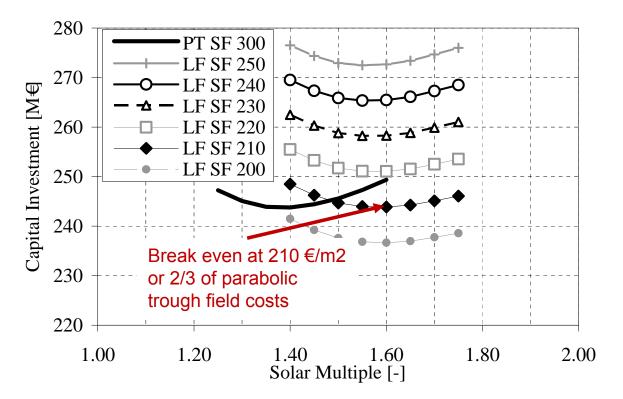

Comparison with PTC > Optical power input

- Fresnel shows summer peak, while PTC shows broader plateau


Comparison with PTC > Overall performance

Comparison with PTC > Overall performance

Question of the day


Why is the relative decrease in performance at low DNI values smaller for LFC than for PTC?

Answer:

Higher concentration ratio of LFC due to larger aperture width and same receiver → more heat input per receiver length → thus heat loss relatively lower.

Comparison with PTC > Annual performance

Assumptions:

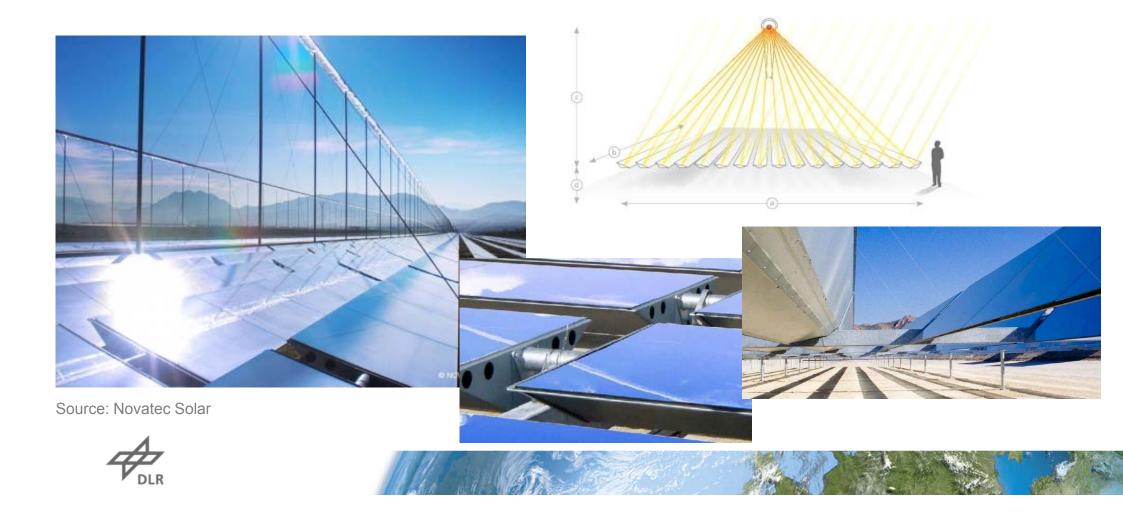
- All configurations produce 220 GWh/year at site Daggett
- Storage size 12 full load hours
- HTF is solar salt
- Variation in solar field costs (€/m²) while keeping power block and storage costs constant

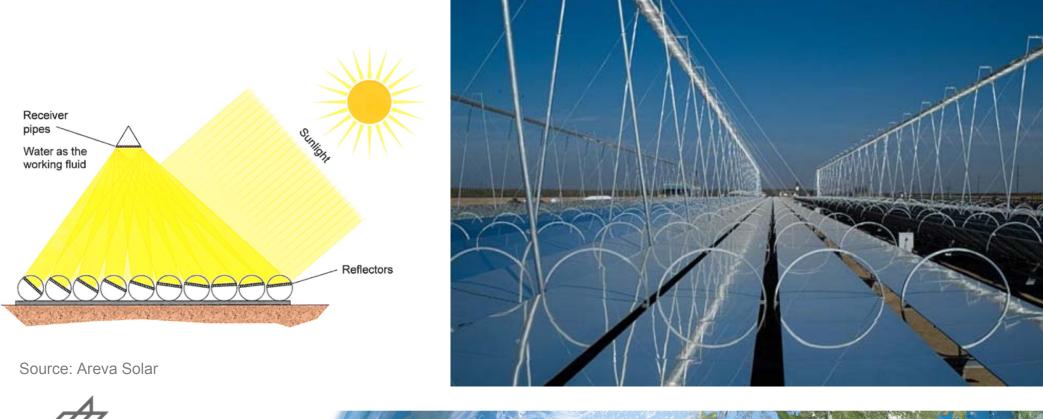
Schenk, H., Hirsch, T., Feldhoff, J.F., et al., 2012, "Energetic comparison of Linear Fresnel and Parabolic Trough Collector Systems," ASME 2012 6th Int. Conference on Energy Sustainability, San Diego, CA, USA. (to be released in July 2012)

 \rightarrow Worse performance of LF is to be compensated by lower specific costs

www.DLR.de/SF • Slide 29 > SFERA Summer School 2012 > Linear Fresnel Collectors > Fabian Feldhoff > June 28, 2012

Components of LFC


- Mirrors and Collectors
- Receiver Concepts


www.DLR.de/SF • Slide 30 > SFERA Summer School 2012 > Linear Fresnel Collectors > Fabian Feldhoff > June 28, 2012

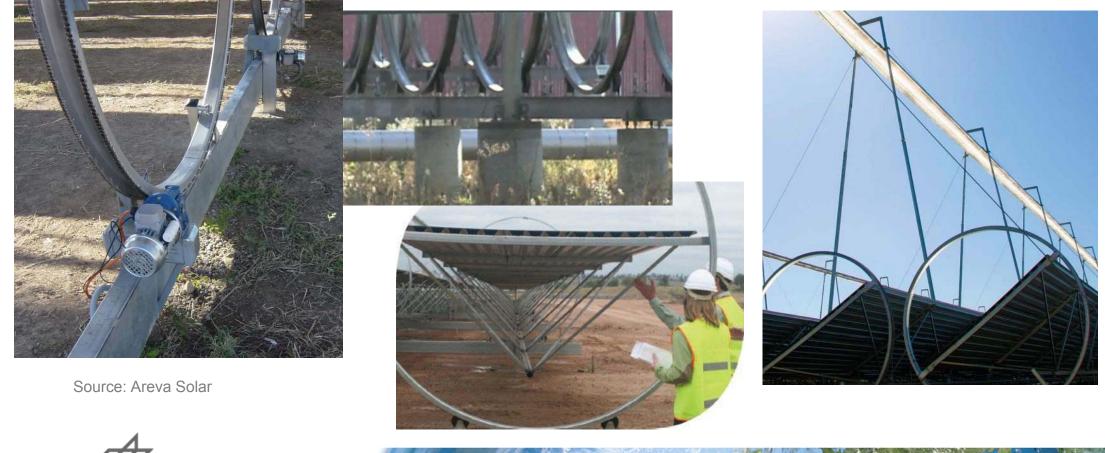
LFC Collectors > Novatec Solar

www.DLR.de/SF • Slide 31 > SFERA Summer School 2012 > Linear Fresnel Collectors > Fabian Feldhoff > June 28, 2012


LFC Collectors > Areva Solar

www.DLR.de/SF • Slide 32 > SFERA Summer School 2012 > Linear Fresnel Collectors > Fabian Feldhoff > June 28, 2012

LFC Collectors > Areva Solar (Kimberlina)



Source: Areva Solar

www.DLR.de/SF • Slide 33 > SFERA Summer School 2012 > Linear Fresnel Collectors > Fabian Feldhoff > June 28, 2012

LFC Collectors > Areva Solar

www.DLR.de/SF • Slide 34 > SFERA Summer School 2012 > Linear Fresnel Collectors > Fabian Feldhoff > June 28, 2012

LFC Collectors > Solar Power Group

www.DLR.de/SF • Slide 35 > SFERA Summer School 2012 > Linear Fresnel Collectors > Fabian Feldhoff > June 28, 2012

LFC Collectors > Solar Power Group

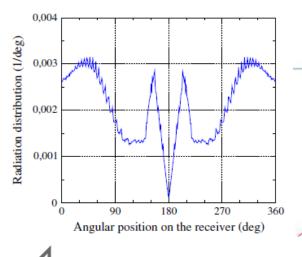
Source: SPG, Ferrostaal, DLR

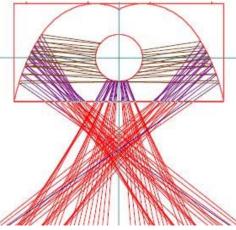
LFC Collectors > Solar Euromed

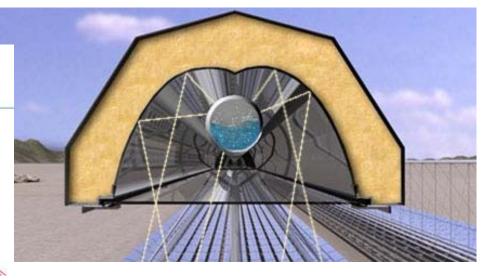
Source: Solar Euromed

www.DLR.de/SF • Slide 37 > SFERA Summer School 2012 > Linear Fresnel Collectors > Fabian Feldhoff > June 28, 2012

LFC Collectors > Selected Commercial LFCs


	Novatec Nova 1	SPG Fresdemo	SPG Type 3	Mirroxx LF	Areva Solar
Module length [m]	44.8	100	96	65	
Module aperture width [m]	16.56	21.25	22	7.5	
Focal length [m]	7.4	8.25	8.8	4	
Module net area [m²]	513.6	1432.3	1467.8	351.0	



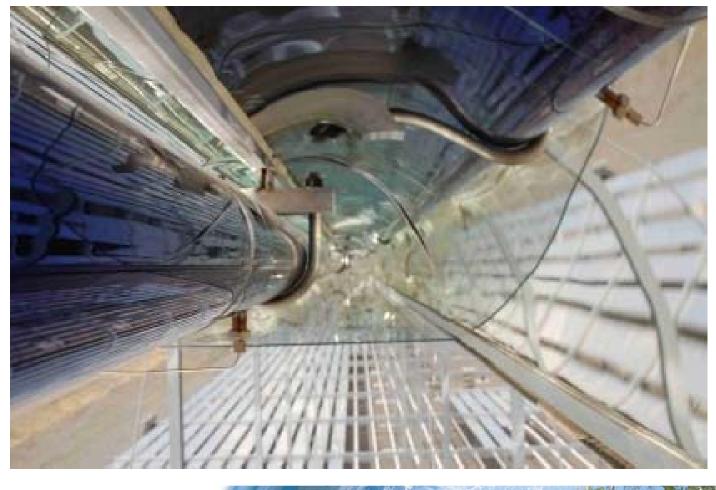


LFC Receivers > Non-evacuated tube + secondary

- Receiver tube with selective coating
- Insulated secondary mirror
- Glass cover to reduce heat losses
- e.g. Nova-1, SPG/Fresdemo

www.DLR.de/SF • Slide 39 > SFERA Summer School 2012 > Linear Fresnel Collectors > Fabian Feldhoff > June 28, 2012

LFC Receivers > Non-evacuated tube + secondary



Source: SPG

LFC Receivers > Non-evacuated tube + secondary

www.DLR.de/SF • Slide 41 > SFERA Summer School 2012 > Linear Fresnel Collectors > Fabian Feldhoff > June 28, 2012

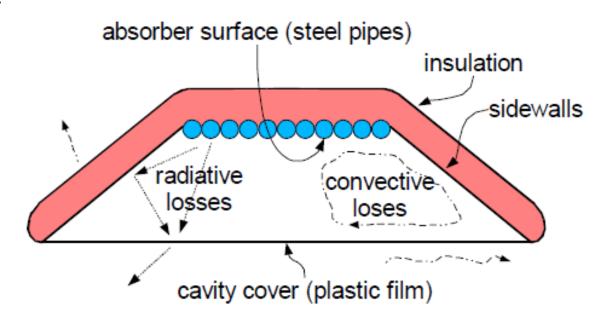
LFC Receivers > Non-evacuated tube + secondary

Source: SPG, DLR

LFC Receivers > Evacuated tube + secondary

- Conventional vacuum type receiver as in parabolic troughs
- Adapted secondary mirror configuration
- No glass cover
- Optical efficiency slightly lower than with non-evacuated tube
- e.g. Supernova (and Industrial Solar)

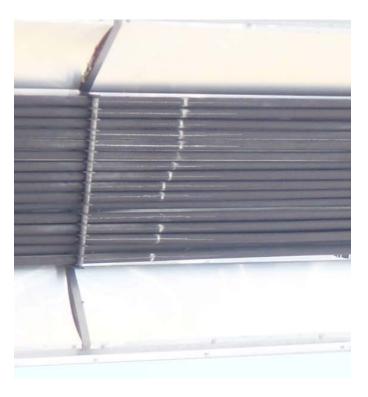
Source: Novatec Solar, SolarPACES 2011



www.DLR.de/SF • Slide 43 > SFERA Summer School 2012 > Linear Fresnel Collectors > Fabian Feldhoff > June 28, 2012

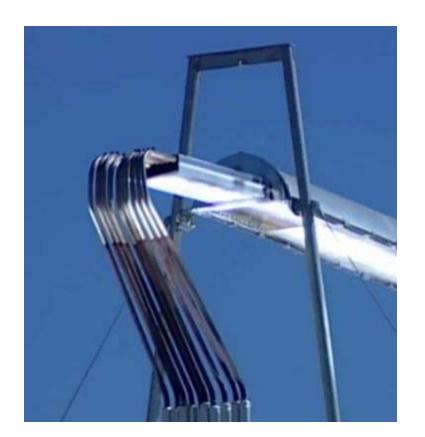
LFC Receivers > Cavity with parallel tubes

- Multiple small diameter receiver tubes in focal line
- Insulated trapezoidal cavity
- No secondary reflector
- Glass cover to reduce heat losses
- e.g. Areva Solar



Pye, J. D., Morrison, G. L., and Behnia, M., 2003, "Transient Modelling of Cavity Receiver Heat Transfer for the Compact Linear Fresnel Reflector," ANZSES www.DLR.de/SF • Slide 44 > SFERA Summer School 2012 > Linear Fresnel Collectors > Fabian Feldhoff > June 28, 2012

LFC Receivers > Cavity with parallel tubes



Sources: Areva Solar; Pye, J. D., Morrison, G. L., and Behnia, M., 2003, "Transient Modelling of Cavity Receiver Heat Transfer for the Compact Linear Fresnel Reflector." ANZSES

Receiver Heat Transfer for the Compact Linear Fresnel Reflector," ANZSES

LFC Length Compensation > Areva Solar

Sources: Areva Solar; Pye, J. D., Morrison, G. L., and Behnia, M., 2003, "Transient Modelling of Cavity Receiver Heat Transfer for the Compact Linear Fresnel Reflector," ANZSES

www.DLR.de/SF • Slide 46 > SFERA Summer School 2012 > Linear Fresnel Collectors > Fabian Feldhoff > June 28, 2012

LFC Construction (Areva Solar)


Power Plants in Operation

	Solar- mundo	Fresdemo	Liddell	PE-1	Augustin Fresnel 1	PE-2
Year	1998	2007	2008	2009	2009	2012
LFC Company	Solarmundo	Ferrostaal/ SPG	Ausra	Novatec Solar	Solar Euromed	Novatec Solar
Location	Liège, Belgium	PSA, Spain	Liddell, Australia	Calasparra, Spain	Themis platform, France	Calasparra, Spain
Total area	2'400 m²	1432 m²	18'490 m²	21'571 m²		302'000 m ²
Parameters		100m, up to 450°C	Preheating	Sat. steam 50 bars, 1.4 MWe		Sat. steam 55 bars, 30 MWe

www.DLR.de/SF • Slide 48 > SFERA Summer School 2012 > Linear Fresnel Collectors > Fabian Feldhoff > June 28, 2012

LFC Test Plants

Solarmundo Plant, Belgium

SPG/Ferrostaal: FresDemo, PSA, Spain

www.DLR.de/SF • Slide 49 > SFERA Summer School 2012 > Linear Fresnel Collectors > Fabian Feldhoff > June 28, 2012

LFC Test Plants

Areva Solar (Ausra), Liddell, Australia

www.DLR.de/SF • Slide 50 > SFERA Summer School 2012 > Linear Fresnel Collectors > Fabian Feldhoff > June 28, 2012

Commercial LFC Plants

Novatec Solar, PE-1, Calasparra, Spain

Novatec Solar, PE-2, Calasparra, Spain

www.DLR.de/SF • Slide 51 > SFERA Summer School 2012 > Linear Fresnel Collectors > Fabian Feldhoff > June 28, 2012

LFC Plant Outlook

- Novatec Solar:
 - Under construction: Liddell (co-firing to coal plant)
 9.3 MWth, 4x403m loop length, 18'490 m², saturated steam at 55 bar/ 270°C
- Areva Solar:
 - Kimberlina, CA, USA: 25 MWth, 5 MWe (still under construction?)

www.DLR.de/SF • Slide 52 > SFERA Summer School 2012 > Linear Fresnel Collectors > Fabian Feldhoff > June 28, 2012

LFC Suppliers for Process Heat An incomplete list...

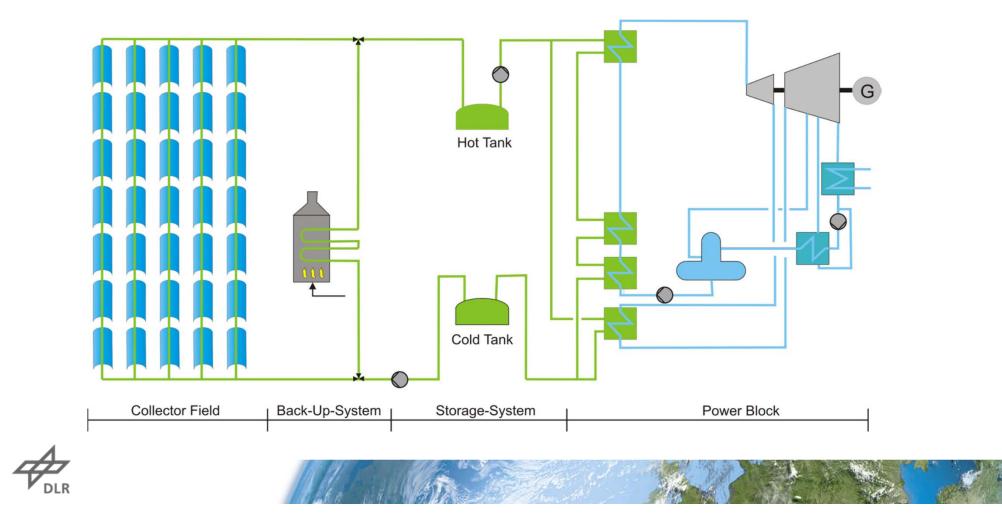
- Chromasun, Australia
- Industrial Solar (former Mirroxx), Germany
- Soltigua, Italy
- Elianto, Italy
- Cnim, France
- ...

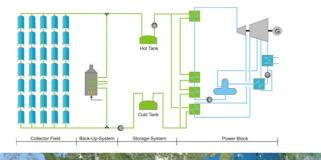
Source: Industrial Solar

LFC Developments > Overview

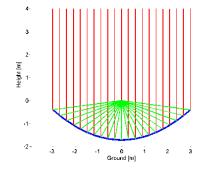
- Use economies of scale
 - Increase degree of automation in production, construction and maintenance
 - Optimize collector design
- Develop receivers for high temperatures
 - Vacuum tube with secondary
 - High temperature coating to become stable at air
 - Secondary reflector to remain stable at high temperatures
- Increase plant portfolio
 - Direct Steam Generation with superheating and at higher pressures
 - Optimized integration of DSG in fossil plants (ISCCS, booster...)
 - Molten salt plants

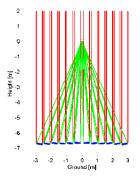
LFC Developments > Plants with DSG


- Advantages
 - Expensive ball joints can be avoided
 - Main heating from below to enhance boiling and avoid critical temperature differences around circumference
 - All commercial LFC plants use DSG so far
 - Easy integration in fossil plants (ISCCS, booster...)
- Disadvantages
 - No long term storage commercially available (yet)

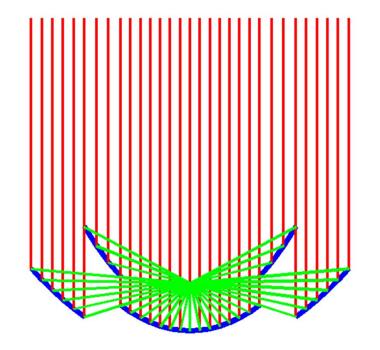

www.DLR.de/SF • Slide 55 > SFERA Summer School 2012 > Linear Fresnel Collectors > Fabian Feldhoff > June 28, 2012

LFC Developments > Plants with Molten Salt


LFC Developments > Plants with Molten Salt


- Advantages
 - Flexible joints can be avoided
 - Easier anti-freeze and drainage operation due to less u-bends
 - Easier impedance heating
- Disadvantages
 - Shorter operation period leads to longer anti-freeze operation
 - Higher heat losses cause higher demand for anti-freeze (without vacuum receivers)

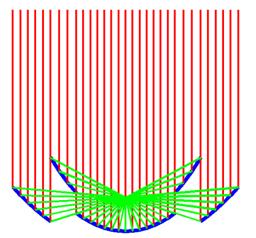
LFC Developments > Comparison with PTC

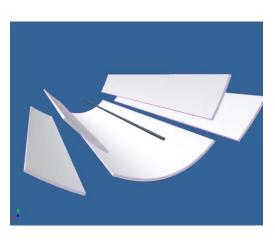


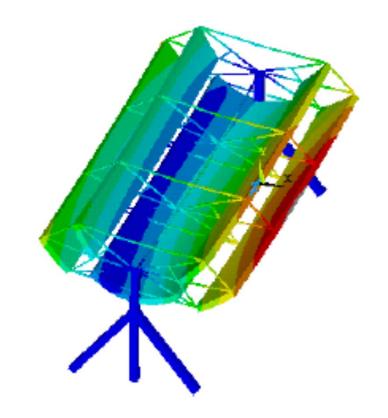
+	-	+	-
High optical efficiency	Flexible tube connections required	Low cost parts and mirrors	Low optical efficiency
Constant output	Wind loads/torque transfer	Low wind loads	Secondary reflector required (usually)
	Few possibilities for cost-reduction		Less operation hours

LFC Developments > Fix Focus Trough

- Combine the best from both worlds:
 - Fix Focus
 - Constant effective aperture intraday
 - Focal line is center of mass
 - No secondary reflector


Source: DLR; Prahl, C., Schapitz, T., Uhlig, R.: SolarPACES 2011




www.DLR.de/SF • Slide 59 > SFERA Summer School 2012 > Linear Fresnel Collectors > Fabian Feldhoff > June 28, 2012

LFC Developments > Fix Focus Trough

- Concept under development...

Source: DLR; Prahl, C., Schapitz, T., Uhlig, R.: SolarPACES 2011

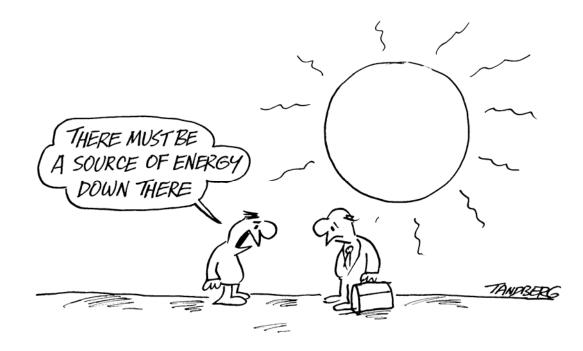
www.DLR.de/SF • Slide 60 > SFERA Summer School 2012 > Linear Fresnel Collectors > Fabian Feldhoff > June 28, 2012

Final remarks on LFC

Similar to parabolic trough, but...

- ...fixed receiver pipe \rightarrow no ball joints
- ...trough shape "split" into multiple small mirror facets
- ...lower optical performance
- ...lower construction cost due to rapid assembly
- ...lower susceptibility to wind damage
- ...more efficient land use
- ...light construction allowing small motors

Future success depending on costs and application...



Source: Novatec Solar

www.DLR.de/SF • Slide 61 > SFERA Summer School 2012 > Linear Fresnel Collectors > Fabian Feldhoff > June 28, 2012

Questions and Discussion...

- Contact: jan.feldhoff@dlr.de

By Ron Tandberg

