Introduction to Solar Resource Assessments

Robert Pitz-Paal / Carsten Hoyer-Klick
German Aerospace Center
Institute of Technical Thermodynamics
Outline

- Solar geometry
- Atmospheric transfer and components of solar radiation
- Ground measurements
- Satellite based assessments
- Solar radiation to tilted planes
- Characteristics of solar resources
- Data sources
- GIS analysis
Getting Renewable Energy to Work

- Available Resources
- Technical and economic potentials
 - Which technologies are feasible?
- Possible capacity development
 - How can they contribute to the national energy system?
- Market introduction
 - How to get them into the market?
 - Where to start?
- Political and financial instruments
 - Legislation, incentives
- Private investments

Private investors need resource data for investments.
Project Development for Renewable Energy Systems

- Finding suitable sites with high resolution maps and economic evaluations
- Detailed engineering with site specific data with high temporal resolution as input to simulation software
Solar Radiation Basics
Solar Constant

Conservation of energy requires that the total energy flux coming out of the sun must also pass through a sphere at 1 AU.

The energy flux density at 1 AU is

\[
\frac{L}{4\pi r^2} = 1367 \frac{W}{m^2}
\]

This is the **Solar Constant**.

Area of a sphere = \(4\pi r^2\)

Sun

\(L = 3.86 \times 10^{26} \text{ W}\)

1 AU

1.5 x \(10^{11}\) m
Variation of the Extraterrestrial Radiation

Solar constant = 1367 Wm$^{-2}$
Extraterrestrial Solar Spectrum
Solar Geometry
Sun – Earth Geometry
The ecliptic is the region of sky (of the celestial sphere) through which the Sun appears to move over the course of a year. This apparent motion is caused by the Earth's orbit around the Sun, so the ecliptic corresponds to the projection of the Earth's orbital plane on the celestial sphere. For this reason, the Earth's orbital plane is sometimes called the plane of the ecliptic.

Due to the tilt of the Earth's rotation axis with respect to its orbital plane, there is an angle of 23.5° between the ecliptic and the celestial equator.
Solar Declination

Declination angle $\delta = 23.45^\circ$

Variation of the declination angle:

$$\delta = 23.45 \times \sin \left[\frac{360}{365} \times (284 + n) \right]$$

with $n = \text{day of the year}$

(Approximation)
Solar Time

- Daily variations of solar radiation are usually described on the basis of solar time.

- Definitions:

 Solar day: Time interval between two subsequent crossings of the Sun's path with the local meridian.

 - length changes from day to day (< 30 sec)
 - mean value: 24h

 Solar noon: Time of the crossing of the Sun's path with the local meridian
Solar Time

The variation of the solar day length is caused by:

- The elliptical path of the Earth around the Sun
 (Kepler’s law: Earth sweeps equal areas in equal times)

- The tilt of the Earth’s axis with respect to the ecliptic plane

Difference between solar time and local mean time
is expressed by Equation of Time
Equation of time

\[E = 9.87 \sin(2B) - 7.53 \cos(B) - 1.5 \sin(B) \]

with \(B = 360^\circ \left(n - 81 \right) / 364 \) and
\(n = \text{day of the year} \)
Hour angle

- The **hour angle** ω describes the solar time in trigonometric terms, i.e. as an angle.

- ω equals the angular displacement of the Sun from the local meridian due to the rotation of the Earth.

- One hour corresponds to an angle of $360^\circ/24h = 15^\circ$.

- By convention, morning hours are calculated negative, afternoon hours positive. At solar noon, $\omega=0^\circ$.
Quelle: Blumberg & Spinnler, 2003
Seitenkosinussatz für sphärische Dreiecke:

\[
\cos (90^\circ - \gamma) = \cos (90^\circ - \varphi) \cos (90^\circ - \delta) + \\
+ \sin (90^\circ - \varphi) \sin (90^\circ - \delta) \cos \omega
\]

\[
\sin \gamma = \sin \varphi \cdot \sin \delta + \cos \varphi \cdot \cos \delta \cdot \cos \omega
\]
Quelle: Blumberg & Spinnler, 2003
Der Azimutwinkel α des Horizontalsystems

Seitenkosenussatz für sphärische Dreiecke:

\[
\cos(90^\circ-\delta) = \cos(90^\circ-\varphi) \cos(90^\circ-\gamma) + \\
+ \sin(90^\circ-\varphi) \sin(90^\circ-\gamma) \cos(180^\circ-\alpha)
\]

\[
\sin \delta = \sin \varphi \cdot \sin \gamma - \cos \varphi \cdot \cos \gamma \cdot \cos \alpha
\]

\[\Rightarrow \cos \alpha = \frac{(\sin \varphi \cdot \sin \gamma) - \sin \delta}{\cos \varphi \cdot \cos \gamma}\]

Bsp. 4:
Azimut 24. April, 14:30 Ortszeit
⇒ $\alpha = -40,395^\circ$
Angle of Incidence

For surfaces not oriented perpendicular to the Sun, the irradiance is given by

\[G = G_n \cos \theta \]
Angle of incidence

\[
\cos \theta = \sin \delta \sin \phi \cos s - \sin \delta \cos \theta \sin s \cos \gamma \\
+ \cos \delta \cos \phi \cos s \cos \omega + \cos \delta \sin \phi \sin s \cos \gamma \cos \omega \\
+ \cos \delta \sin s \sin \gamma \sin \omega
\]

with:
- latitude \(\Phi \)
- solar declination \(\delta \)
- hour angle \(\omega \)
- slope \(\beta \)
- surface azimuth \(\gamma \)
Atmospheric Transfer and Components of solar radiation
Solar Spectrum and Atmospheric influence

1. Planck curve $T=5780 \text{ K}$ at mean sun-earth distance
2. Extraterrestrial solar spectrum with additional
3. Absorption by O_3
4. Scattering by O_2 and N
5. Scattering by aerosols
6. Absorption by H_2O vapor
7. Absorption by aerosols
Atmospheric Extinction Processes

- Absorbed
- Direct transmitted to surface
- Scattered in any direction
- Reflected back to space
- Absorbed
Scattering Regimes

Dimensionless size parameter $X = \frac{2\pi r}{\lambda}$ as a function of wavelength (λ) of the incident radiation and particle radius r.
Rayleigh and Mie Scattering

Rayleigh scattering Mie scattering Mie Scattering, larger particles

Direction of incident light
Air Mass
Properties of Solar Radiation

Radiation at the top of atmosphere

- Ozone: Absorption (ca. 1%)
- Air molecules: Rayleigh scattering and absorption (ca. 15%)
- Aerosol: Scatter and Absorption (ca. 15%, max. 100%)
- Clouds: Reflection, Scatter, Absorption (max. 100%)
- Water Vapor: Absorption (ca. 15%)

Direct normal irradiance at ground
Radiative Transfer in the Atmosphere

![Graph showing direct normal irradiation throughout the day, with various atmospheric components affecting the irradiation levels.](image)
Direct Normal Irradiation (DNI)

\[\text{DNI} = \frac{\text{DHI}}{\sin \alpha} \]

Example:

\[\text{DHI} = 600 \text{W/m}^2 \]
\[\alpha = 50^\circ \]
\[\rightarrow \text{DNI} = 848 \text{W/m}^2 \]

DNI > GHI
Global Horizontal Irradiation (GHI)

\[\text{GHI} = \text{DHI} + \text{DIF} \]

Example:

- **DHI** = 600 W/m²
- **DIF** = 150 W/m²

\[\rightarrow \text{GHI} = 750 \text{ W/m}^2 \]
Clear sky
Clearness Index

The clearness index k_T is a more general measure of the radiation that is transmitted through the atmosphere (transmittance).

It relates the radiation incident on the earth's surface to the extraterrestrial radiation:

$$k_T = \frac{G}{G_o}$$

Note, that there is still a significant influence of the air mass through increased extinction with increased path length even for constant atmospheric situations.

The monthly average clearness index generally varies from about 0.3 to about 0.8.
Optical Depth

Optical Depth (or Optical Thickness) δ : Dimensionless line integral of the extinction coefficient along any path in a medium.

For the volume extinction coefficient τ has the dimension of length^{-1} (area per volume).

Physical interpretation:
length of a path in units of the mean free path (in an uniform medium)
Aerosol optical Depth (AOD)

- quantitative measure of the extinction of solar radiation by aerosol scattering and absorption between the point of observation and the top of the atmosphere
- not directly measurable; retrieval from ground-based observations of atmospheric spectral transmission by sunphotometers
- The solar irradiance I at a given wavelength can be expressed as $I = I_0 \exp(-m\delta)$ with I_0 the extraterrestrial solar irradiance, m the air mass and δ the total optical depth.
- The total optical depth δ at a given wavelength is composed of several components such as scattering by gas molecules, δR (Rayleigh scattering), extinction by aerosol particles, δA, absorption of trace gases, δG, like ozone, and possible cloud contamination. Thus, the AOD can be obtained from the total optical depth by subtracting modelled estimates of the other components:
 $$\text{AOD} = \delta A = \delta - \delta R - \delta G$$
Atmospheric Turbidity

- **Linke turbidity factor** T_L: Measure of optical depth of the atmosphere due to aerosol particles and water vapour relative to a dry and clean atmosphere:
 $$T_L = \frac{\delta (m_r)}{\delta_{Rayl}(m_r)}$$

- Interpretation: Number of clean and dry atmospheres necessary to get the same extinction effect as that produced by the actual atmosphere.

- T_L depends on the optical depth of the clean and dry atmosphere which is very sensitive to the air mass AM (or m_r). Therefore, T_L depends on AM, and consequently, on solar elevation.

- T_L generally lies between 2.0 (for a clean and dry atmosphere) and 6.0 (for a humid and polluted atmosphere). A complete clean and dry atmosphere (‘Rayleigh atmosphere‘) gives the value $T_L=1$.
Clear sky modeling

Simple broadband clear sky model for direct and diffuse irradiance (Bird)

Basic equations:

\[I_{\text{dir}} = I_0 (\cos \theta) (0.9662) \tau_{\text{Rayl}} \tau_{O3} \tau_{\text{MolAbs}} \tau_{H2O} \tau_{\text{Aer}} \]

\[I_{\text{atm_sc}} = I_0 (\cos \theta) (0.79) \tau_{O3} \tau_{H2O} \tau_{\text{MolAbs}} \tau_{H2O} \tau_{\text{AerAbs}} \]

\[= [0.5 (1- \tau_{\text{Rayl}}) + B_a (1- \tau_{\text{AerSc}})] / 1 - m + (m)^{1.02} \]

\[I_g = (I_{\text{dir}} + I_{\text{atm_sc}}) / (1-\tau) \]

with \(I_0 \): extraterrestrial irradiance
\(\tau \): atmospheric transmittances
Clear Sky Index

- The clear sky index k_T^* is a more general measure of the radiation that is transmitted through the atmosphere (transmittance).
- It relates the radiation incident on the earth's surface to the radiation in the clear sky case
- $k_T^* = \frac{G}{G_{\text{clear}}}$
- As such, the clear sky index is independent on solar geometry and should be free of influence of the atmospheric path length. As clear sky models are not perfect, there is some influence left.
- The clear sky index varies from almost 0 to about 1.1. Values above one are possible, if the sky is clearer than then model expects or in broken cloud situations where reflections from cloud add to the radiation at the ground.
Ground Measurements
Instruments

- **Absolute Cavity Pyrheliometer**
 A self-calibrating, electrical-substitution, view-limited thermopile radiometer the aperture of which is maintained normal to the sun’s beam radiation.

- **Pyrheliometer**
 Same as an absolute cavity except that it is not self-calibrating; i.e., a view-limited radiometer the aperture of which is maintained normal to the sun’s beam component.

- **Pyranometer**
 A radiometer used to measure all radiation incident on its flat receiver from a 2-pi steradians hemisphere.
Solar radiation instruments

direct irradiance

- absolute cavity radiometer (current world reference of calibration, used to transfer calibration from the World Radiation Reference in Davos to working pyrheliometers)
- field pyrheliometer
- Field of view usually 5°
- combined measurement uncertainty: 1%*
- rotating shadowband pyranometer uncertainty: 2%

*target accuracy of Baseline Surface Radiation Network (BSRN)
Solar radiation instruments

- Most pyranometers use a thermopile as means of converting solar irradiance into an electrical signal.
- Conversion of temperature difference between hot and cold junctions of the thermopile to electrical voltage (~40 µV C⁻¹ jct⁻¹).
- Advantage: Thermopile is spectrally neutral across the entire solar spectrum (domes may have spectral dependencies)
- Disadvantage: Output is temperature dependent and the instruments must ‘create’ a cold junction.
- Three primary types of instruments:
 - Black and White
 - Non-temperature compensated (Single and double domed)
 - Temperature compensated (Single and double domed)
- Uncertainty: 2%* – 5% (*target accuracy of Baseline Surface Radiation Network (BSRN))
Pyranometer Types

- **K & Z CM11**
 (double dome, temperature compensated)

- **EKO Black & White**
 (single dome)

- **K & Z CM5**
 (single dome, non-temperature compensated)
Photoelectric Pyranometers

- Spectral response is non-linear and does not match solar spectrum.
- General calibrations are through comparison with pyranometers, therefore there are spectral mismatch problems. must be used in the same lighting conditions as those under which it was calibrated.
- Pyranometer sensors are calibrated against an Eppley Precision Spectral Pyranometer (PSP) under natural daylight conditions. Typical error under these conditions is ±5%.
- Similar problems arise when using sensors calibrated in one climate regime and used in a different regime.
Solar radiation instruments

diffuse irradiance

- shaded pyranometers
 - pyranometer with shading ring
 - pyranometer with shading disc and sun tracking device

- uncertainty: 4%* - 8%

*target accuracy of Baseline Surface Radiation Network (BSRN)
Precise sensors *(also for calibration of RSP)*:

Thermal sensors:
pyranometer and pyrheliometer, precise 2-axis tracking

Advantage:
+ high accuracy
+ separate GHI, DNI and DHI sensors
 (cross-check through redundant measurements)

Disadvantages:
- high acquisition and O&M costs
- high susceptibility for soiling
- high power supply
Instrumentation for unattended abroad sites:
Rotating Shadowband Pyranometer (RSP)

Sensor: Si photodiode

Advantages:
+ fairly acquisition costs
+ small maintenance costs
+ low susceptibility for soiling
+ low power supply

Disadvantage:
- special correction for good accuracy necessary (established by DLR)
Soiling – Why pyrheliometers don’t meet the need

![Graph showing relative error of daily DNI sum between calculated DNI of cleaned pyranometer and measured DNI of uncleaned pyrheliometer and RSP. The graph displays a trend where the relative error decreases over time, with the RSP corrected and pyrheliometer data showing distinct patterns.](image)
RSP – Principle of Measurement

Simplified sensor signal during shadow band rotation, which takes place once per minute and lasts about 1.5 seconds per rotation.
Solar Millennium Meteostations

Measurements

- All relevant meteorological data for CSP in 1-10 min intervals
 - Direct Normal Irradiation (DNI)
 - Global Horizontal Irradiation (GHI)
 - Diffuse Horizontal Irradiation (DHI)
 - Temperature
 - Relative Humidity
 - Wind speed
 - Wind direction
 - Atmospheric pressure or others on request
Solar Millennium Meteostations

Main Features

→ Fully automated measurement and data acquisition at arbitrary remote sites
→ Automated daily data transfer via mobile communication network
→ Autarkic power supply by solar panel and battery
→ Minimal maintenance effort
→ Rugged station for tough climatic conditions

Certified Quality:

→ One by one radiation sensor calibration by German Aerospace Center (DLR)
→ Standard deviation in radiation ~4% (individually determined by DLR)
→ Sophisticated correction formulas developed in cooperation with DLR
Radiometer Characteristics

- **Calibration Stability**
 can it maintain a calibration over a long period of time?

- **Cosine response**
 are the optics of a quality that the signal output is independent of solar elevation?

- **Temperature stability**
 will a given input provide the same output voltage independent of temperature?

- **Spectral Quality**
 is the instrument spectrally flat across the solar spectrum so that it responds linearly to changes in the solar spectrum?

- **Tilt**
 does the instrument behave the same when tilted?
Calibration

International calibration methods

- Pyranometer and pyrheliometer calibration scales are traced to the World Radiometric Reference (WRR) (maintained by the World Radiation centre (WRC) in Davos, Switzerland)
- WRC maintains the World Standard Group (WSG), and thus the World Radiometric reference (WRR), with the highest possible stability and to provide the highest possible world-wide homogeneity for solar irradiance measurements.
Calibration – World Radiometric Reference

- measurement standard representing the SI unit of irradiance
- introduced to ensure world-wide homogeneity of solar radiation measurements
- in use since 1980 determined from the weighted mean of the measurements of a group of 15 absolute cavity radiometers which have been fully characterized
- Currently, the WSG is composed of 6 instruments: PMO-2, PMO-5, CROM-2L, PACRAD-3, TMI-67814 and HF-18748.
- estimated accuracy of 0.3%
- mandatory use introduced by WMO in its statutes in 1979
Availability of ground measured data

long term measurements at meteorological stations

⇒ National Meteorological offices
⇒ World radiometric Network (by World Meteorological Organisation)
⇒ Baseline Surface Radiation Network
World radiometric network

- global irradiance & sunshine duration
- ca. 1200 stations
- monthly or daily values

World Radiometric network 1966-1993
(source: WRDC/WMO, Cros et al., 2004)
Baseline surface radiation network

- high quality measurements
- global, direct, diffuse
- minute values
Resource products based on ground measured data

- **spatial interpolation techniques** to derive maps and site specific data
- **stochastic models or average daily profiles**
 to derive values with high temporal resolution
 (daily, hourly or minute values)
- **statistical global to beam models** to derive DNI
Satellite based assessments
How to derive irradiance data from satellites

- The Meteosat satellite is located in a geostationary orbit.
- The satellite scans the earth line by line every half hour.
Das Meteosat System – Image recording

- The satellite rotates at 100 rpm
- Line by line scanning of the earth from south to north
- Pixels by sampling of the analog sensor signal
- Field of view of the sensor e.g. in Europe 3 x 4 km due to geometric distortion
How to derive irradiance data from satellites

- The Meteosat satellite is located in a geostationary orbit.
- The satellite scans the earth line by line every half hour.
- The earth is scanned in the visible...
How to derive irradiance data from satellites

- The Meteosat satellite is located in a geostationary orbit.
- The satellite scans the earth line by line every half hour.
- The earth is scanned in the visible and infra red spectrum.
How to derive irradiance data from satellites

- The Meteosat satellite is located in a geostationary orbit.
- The satellite scans the earth line by line every half hour.
- The earth is scanned in the visible and infrared spectrum.
- A cloud index is composed from the two channels.
Clear sky Model input data

- Aerosol optical thickness
 GACP Resolution 4°x5°, monthly climatology
 MATCH Resolution 1.9°x1.9°, daily climatology

- Water Vapor: NCAR/NCEP Reanalysis
 Resolution 1.125°x1.125°, daily values

- Ozone: TOMS sensor
 Resolution 1.25°x1.25°, monthly values
Uncertainty in Aerosols

- All graphs are for July
- Scales are the same! (0 – 1.5)
- Large differences in Aerosol values and distribution

GADS

NASA GISS v1 / GACP

Toms

NASA GISS v2 1990

GOCART

AeroCom

Linke Turbidity
Calculation of solar radiation from remote sensing

Methods used:
- Heliosat-2 for the visible channel
- IR brightness temperature as indicator for high cirrus clouds (T < -30°C, DNI = 0)
Cloud Transmission for GHI
Cloud Transmission for DNI

Simple function \(\tau = e^{-10^{*}ci} \)

Complex functions:
Different exp. function for various viewing angles and brightness temperatures
Comparing ground and satellite data: time scales

- Ground measurements are typically pin point measurements which are temporally integrated
- Satellite measurements are instantaneous spatial averages
- Hourly values are calculated from temporal and spatial averaging (cloud movement)
Construction of hourly averages from satellite images

- The hourly irradiance values are calculated by a weighted average.

Weights for the hourly average

12 UTC 13 UTC

Pixel acquisition time

- full scan: 3 images per hour
Comparing ground and satellite data: “sensor size”

- Solar thermal power plant: 200MW ≈ 2x2 km²
- Satellite pixel: ~3x4 km²
- Ground measurement instrument: ~2x2 cm²
Comparison with ground measurements and accuracy

general difficulties: point versus area and
time integrated versus area integrated

DNI time serie for 1.11.2001, Almería
Partially cloudy conditions, cumulus humilis
Comparison with ground measurements and accuracy

general difficulties: point versus area and time integrated versus area integrated

DNI time series for 30.4.2000, Almería
overcast conditions, strato cumulus
Satellite data and nearest neighbour stations

Satellite derived data fit better to a selected site than ground measurements from a site farther than 25 km away.

Perez et al., ASRC
Meteosat Positions

-3.5°
MSG 2004-2006

0°
MFG Prime 1993-2006
MSG 2006ff

Meteosat Prime
Meteosat East
Comparison First und Second Generation

<table>
<thead>
<tr>
<th></th>
<th>1st Generation (MOP)</th>
<th>2nd Generation (MSG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiometric</td>
<td>8 bit</td>
<td>10 bit</td>
</tr>
<tr>
<td>Spatial (VIS - HRV)</td>
<td>2.5 km</td>
<td>1 km</td>
</tr>
<tr>
<td>Spatial (all other)</td>
<td>5 km</td>
<td>3 km</td>
</tr>
<tr>
<td>Temporal</td>
<td>30 min</td>
<td>15 min</td>
</tr>
<tr>
<td>Spectral</td>
<td>3 channels</td>
<td>12 channels</td>
</tr>
</tbody>
</table>
Necessary changes in MSG Processing

- MSG does not have a full disc broadband vis channel. The HRV channel is due to the split coverage difficult to use.
- Two narrowband channels at 0.6 and 0.8 µm can be use to create a pseudo broadband channel. We apply a method by Cros / Albuisson / Wald (2005).
Solar radiation to tilted planes
Solar radiation on a tilted plane
Direct radiation on a tilted plane

\[G_{bt} = G_{bn} \cos \theta \]

With: \(G_b = G_{bn} \cos \theta_z \)

\[G_{bt} = G_b \cos \theta \cos \theta_z \]

this is often referred as the geometric factor \(R_b \)
Radiation reflected from ground

\[G_{rt} = G \rho \frac{1 - \cos \beta}{2} \]

for isotropic ground reflectance \(\rho \)
Diffuse radiation to a tilted plane

\[G_{dt} = G_d \frac{(1 + \cos \beta)}{2} \]

Liu - Jordon

Temps / Coulson
Klucher

anisotropic effects
Radiation on a titled plane – more complex – Perez Model

- Representation of the three radiation components seen by a tilted plane (direct, diffuse and reflected) and representation of the sky dome used in the Perez algorithm.

- Sky radiance is respectively equal to \(L \), \(F_1L \), and \(F_2L \) for the main, the circumsolar, and the horizon zone.

- Highly empirical approach!
Splitting Global in the components Diffuse + Direct

- Calculation of radiation on tilted planes needs diffuse fraction
- but: depends heavily on empirical tuning
- depending on considered time scale
- nonlinear!
- mainly related with: clearness index (global irradiance), solar elevation, turbidity, hour-to-hour-variability, surface albedo
- important: proper probability distribution of diffuse fraction
Isotropic versus non Isotroopitic diffuse radiation

- Circumsolar
- Horizon Brightening

Clear sky
Cloudy sky
Intermediate sky (broken cloudiness)
Diffuse fraction models

- Simple models based only on clear-sky index kt
- Piecewise linear function with threshold values for clear (k_c) and cloudy (k_0) skies
Diffuse fraction – more complex

- Skartveit/Olseth model (1997)

- adding effects of increasing diffuse irradiance by reflecting clouds depending on variability index s and solar altitude (i.e., 90° - solar zenith):
 - 10° (top),
 - 50° (bottom)
Characteristics of Resource Assessments
Inter annual variability

Strong inter annual and regional variations

Average of the direct normal irradiance from 1999-2003

1999

deviation to mean

2000

2001

2002

2003
Long-term variability of solar irradiance

- 7 to 10 years of measurement to get long-term mean within 5%
Ground measurements vs. satellite derived data

Ground measurements

Advantages
+ high accuracy *(depending on sensors)*
+ high time resolution

Disadvantages
- high costs for installation and O&M
- soiling of the sensors
- sometimes sensor failure
- no possibility to gain data of the past

Satellite data

Advantages
+ spatial resolution
+ long-term data *(more than 20 years)*
+ effectively no failures
+ no soiling
+ no ground site necessary
+ low costs

Disadvantages
- lower time resolution
- low accuracy at high time resolution
Combining Ground and Satellite Assessments

Satellite data
- Long term average
- Year to year variability
- Regional assessment

Ground data
- Site specific
- High temporal resolution possible
 (up to 1 min to model transient effects)
- Good distribution function
Matching Ground and Satellite Data

Why do ground and satellite data not match?

Due to uncertainties in:
- Atmospheric Parameters, most prominent Aerosols

Cloud transmission:
- The cloud index is a combination of cloud fraction and transparency. A semi transparent cloud can be distinguished well from a fractional cloud cover.
- Parameterization may depend on prevailing cloud types in the region.
Procedure for Matching Ground and Satellite Data

1. **Satellite assessment**
 - **Comparison**
 - Separation of clear sky and cloud conditions
 - **Recalculation**
 - with alternative atmospheric input
 - **Selection**
 - of best atmospheric input

2. **Ground measurements**
 - **Recalculation**
 - with alternative cloud transmission tables
 - **Selection**
 - of best cloud transmission table
 - **Transfer MSG to MFG**
 - Recalculation of long term time series

3. **Best fit satellite data**
Guidance and Access to Data

- Many sources for solar resource knowledge are available
- Every source has its own access mechanism and data format
- Quality of the sources is often not well known
- Results are difficult to compare

There is quite a number of data sources, but this creates uncertainty of the results, especially if they do not agree.
Benchmarking of Time Series Products

- **First order measures:**
 Bias, root mean square error, standard deviation

- **Exact match of data pairs in time**

 Sometime this match is not necessary
 (e.g. system layout with historical data)

- **Second order measures:**
 Based on Kolmogrov-Smirnov Test

 Match of distribution functions
Benchmarking Rules

- The ground data has passed the QC procedure.
- Global irradiance/illuminance is greater zero (exclude night values and missing measurements).
- The modelled value is valid.
- Averages are calculated from all valid data pairs.
Exercise I – GHI Bias

- Large Deviations in Davos
- Overall low bias.

SOLEMI: 3 %
Satel-light: -1 %
UniOL: 1 %
Exercise I – GHI RMSD

SOLEMI: 28 %
Satel-light: 20 %
UniOL: 19 %

• Large Deviations in Davos
Exercise I – GHI KSI

- Large Deviations in Davos
Exercise I – DNI Bias

- Large Deviations in Davos, Toravere, Norrkoping, probably Snow
- Overall low bias

SOLEMI: 1%
Satel-light: 4%
UniOL: -1%
Exercise I – DNI RMSD

- RMSD is about twice as high as for GHI

SOLEMI: 48 %
Satel-light: 36 %
UniOL: 36 %
Exercise I – DNI KSI

- No clear tendency for specific data set, each one is best and worst in some case.
Benchmarking of Maps

Assessment of the uncertainty of map based products by comparing a number of maps

Average solar radiation from different maps

Uncertainty at 95% confidence interval
Data Sources
Resource products: input and extension

<table>
<thead>
<tr>
<th>product</th>
<th>input</th>
<th>area</th>
<th>period</th>
<th>provider</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA SSE</td>
<td>ISCCP</td>
<td>World</td>
<td>1983-2005</td>
<td>NASA</td>
</tr>
<tr>
<td>Meteonorm</td>
<td></td>
<td>World</td>
<td>1981-2000</td>
<td>Meteotest</td>
</tr>
<tr>
<td>Solemi</td>
<td></td>
<td></td>
<td>1991-2000</td>
<td>DLR</td>
</tr>
<tr>
<td>Helioclim</td>
<td></td>
<td></td>
<td>1985-></td>
<td>Ecole de Mines</td>
</tr>
<tr>
<td>EnMetSol</td>
<td></td>
<td></td>
<td>1995-></td>
<td>Univ. of Oldenburg</td>
</tr>
<tr>
<td>Satel-light</td>
<td></td>
<td>Europe</td>
<td>1996-2001</td>
<td>ENTPE</td>
</tr>
<tr>
<td>PVGIS Europe</td>
<td></td>
<td>Europe</td>
<td>1981-1990</td>
<td>JRC</td>
</tr>
<tr>
<td>ESRA</td>
<td></td>
<td>Europe</td>
<td>1981-1990</td>
<td>Ecole de Mines</td>
</tr>
</tbody>
</table>

- <10 years
- 10-20 years
- >20 years
Resource products: Resolution

<table>
<thead>
<tr>
<th>product</th>
<th>input</th>
<th>temp resolution</th>
<th>spatial resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA SSE</td>
<td>ISCCP</td>
<td>averag. daily profile</td>
<td>100 km</td>
</tr>
<tr>
<td>Meteonorm</td>
<td></td>
<td>synthetic hourly/min</td>
<td>1 km (+SRTM)</td>
</tr>
<tr>
<td>Solemi</td>
<td></td>
<td>1h</td>
<td>1 km</td>
</tr>
<tr>
<td>Helioclim</td>
<td></td>
<td>15min/30min</td>
<td>30 km // 3-7 km</td>
</tr>
<tr>
<td>EnMetSol</td>
<td></td>
<td>15min/1h</td>
<td>3-7 km // 1-3 km</td>
</tr>
<tr>
<td>Satel-light</td>
<td></td>
<td>30min</td>
<td>5-7 km</td>
</tr>
<tr>
<td>PVGIS Europe</td>
<td></td>
<td>averag. daily profile</td>
<td>1 km (+ SRTM)</td>
</tr>
<tr>
<td>ESRA</td>
<td></td>
<td>averag. daily profile</td>
<td>10 km</td>
</tr>
</tbody>
</table>

- **synthetic high resolution values**
- **measured high resolution values**
Resource products: parameters

<table>
<thead>
<tr>
<th>product</th>
<th>parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA SSE</td>
<td>GHI, DNI, DHI, clouds</td>
</tr>
<tr>
<td>Meteonorm</td>
<td>GHI, DNI, DHI, shadowing, illuminance</td>
</tr>
<tr>
<td>Solemi</td>
<td>GHI, DNI</td>
</tr>
<tr>
<td>Helioclim</td>
<td>GHI, DNI</td>
</tr>
<tr>
<td>EnMetSol</td>
<td>GHI, DNI, DHI, spectra</td>
</tr>
<tr>
<td>Satel-light</td>
<td>GHI, DNI, DHI, illuminance</td>
</tr>
<tr>
<td>PVGIS Europe</td>
<td>GHI, DHI, shadowing</td>
</tr>
<tr>
<td>ESRA</td>
<td>GHI, DNI, DHI</td>
</tr>
</tbody>
</table>
NASA-SSE

NASA Satellite Measurements, Analysis and Modeling

Terra Aqua

Surface Meteorology and Solar Energy (SSE) Datasets And Web interface

SSE Web Site
http://eosweb.larc.nasa.gov/sse/

Over 200 solar energy and meteorology parameters averaged from 10 years of data

Growing over the last 7 years to nearly 14,000 users, nearly 6.4 million hits and 1.25 million data downloads

Earth System Science Applied Science Outcome

- 5 years of half hour data from 1996 to 2000
- Coverage: Europe

Maps | Diagrams | Data files
Meteonorm

- Based on ground data
- Satellite assisted interpolation between stations
- Stochastic models to derive higher resolution data
- Global to tilted models
Meteonorm

Climate data
- 8050 stations
- 8 parameters:
 - Global radiation (horizontal, inclined)
 - Air temperature
 - Dewpoint temperature
 - Wind speed and direction
 - Sunshine duration
 - Precipitation
 - Days with precipitation

Chain of Algorithms
- Linke turbidity monthly
- Global radiation monthly
- Temperature (means, distributions) monthly
- Clear sky radiation
- Global radiation Daily values (stochastic generation)
- Global radiation Hourly values (stochastic generation)
- Beam/diffuse rad.
- Global radiation on inclined planes With or without high horizon
- Temperature Hourly values

DATA
- solar radiation (Europe, Africa & SW Asia)
- ambient temperature (Europe)
- + terrain, land cover…

ASSESSMENT TOOLS
- solar radiation for fixed and sun-tracking surfaces
- output from grid-connected PV
- performance of standalone PV (only Africa)

MAPS
- interactive
- static
PVGIS

Calculation of grid-connected PV performance

- Calculation takes into account angle-of-incidence effects
- For crystalline silicon and CIS/CIGS, the effects of temperature and irradiance on the conversion efficiency are modelled.
- Generic (user-selected) value for BOS losses.
- Calculates output for:
 - Specified inclination and orientation
 - Optimum inclination for given orientation
 - Optimum inclination and orientation
 - 1- and 2-axis flat-plate tracking
Helioclim

- same area for H1, H2, H3
- uncertainties of irradiance values assessed and provided
- dissemination through the SoDa Service
 - www.soda-is.com
- access to data in one click
- access on-pay, except 1985-1989 (daily) and 2005
- coupled to other services, e.g. irradiance on inclined surface
Satellite data: SOLEMI – Solar Energy Mining

- SOLEMI is a service for high resolution and high quality data
- Coverage: Meteosat Prime up to 22 years, Meteosat East 10 years (in 2008)
SWERA – Solar and Wind Energy Resource Assessment

- Initial GEF funded project to assess solar and wind resources in 13 developing countries
- Now turned into a programme of UNEP, most recent assessment in the United Arab Emirates
- Archive consists a number of different country specific and regional data sets
- Access at: http://swera.unep.net
SWERA – Renewable Energy Explorer
SWERA Renewable Energy Explorer
Typical Meteorological years

- A typical meteorological year (TMY) data set provides designers and other users with a reasonably sized annual data set that holds hourly meteorological values that typify conditions at a specific location over a longer period of time, such as 30 years.
- The TMY data set is composed of 12 typical meteorological months (January through December) that are concatenated essentially without modification to form a single year with a serially complete data record for primary measurements. These monthly data sets contain actual time-series meteorological measurements and modeled solar values, although some hourly records may contain filled or interpolated data for periods when original observations are missing from the data archive.
Typcial Meteorological Years II

The Sandia method is an empirical approach that selects individual months from different years of the period of record. For example, in the case of the NSRDB that contains 30 years of data, all 30 Januarys are examined, and the one judged most typical is selected to be included in the TMY.

The Sandia method selects a typical month based on nine daily indices consisting of the maximum, minimum, and mean dry bulb and dew point temperatures; the maximum and mean wind velocity; and the total global horizontal solar radiation. Final selection of a month includes consideration of the monthly mean and median and the persistence of weather patterns. The process may be considered a series of steps.
Results of the satellite-based solar assessment

Digital maps: e.g. annual sum of direct normal irradiation in 2002 in the Mediterranean Region

The original digital maps can be navigated and zoomed with Geographical Information Systems like ArcView or Idrisi.

Temporal resolution of input data: 1 hour
Spatial resolution of digital map: 1 km x 1 km per Pixel
Long term analysis: up to 20 years of data
Results of the satellite-based solar assessment

Time series: for single sites, e.g. hourly, monthly or annual
Unifying Access

- Lessons learned from SoDa:
 - General portal is beneficial for solar energy users
 - SoDa used proprietary software and communication standards
 - High maintenance efforts in operating the portal

- New approach in MESoR:
 - Open source software portal with large development community; Internet standard communication protocols
 - Google Maps API for ease of use
 - The portal is a broker for data bases located elsewhere, it does not store and offer data itself
 - Connexion with larger initiative (GEO/GEOSS - IEA-Task36 SHC)
The new MESoR Portal

- Site selection
 - Selection of data sources
 - Information about the data source
 - Results display
 - Site selection
 - Service dedicated forms
 - Output to various formats
 - Computation launch
The new MESoR Portal

Google Map API

- Ease of use
- No learning curve
- De facto Standard
The new MESoR Portal

- Forms tailored for each applications
- Handle various output formats
 - Tabular in browsers
 - Excel Spreadsheet
 - PDF
 - CSV
The new MESoR Portal

- Tabs handle Service’s information
- Build with AJAX (Asynchronous)

- Result tab handle the selected output formats
 - Tabular in browsers
 - Excel Spreadsheet
 - PDF
 - CSV
The new MESoR Portal

Tabular results output in browser
The new MESoR Portal

Excel file output sample
The new MESoR Portal

Excel file output result
GIS Analysis
Generation of an Exclusion Map
Solar Thermal Electricity Generating Potentials in Morocco

- **Technical Potential**: 20151 TWh/y (DNI > 1800 kWh/m²/y)
- **Economic Potential**: 20146 TWh/y (DNI > 2000 kWh/m²/y)
- **Power Demand 2000**: 15 TWh/y
- **Power Demand 2050**: 235 TWh/y (Scenario CG/HE)
- **Tentative CSP 2050**: 150 TWh/y (Scenario CG/HE)
- **Coastal Potential**: 300 TWh/y (< 20 m a. s. l.)
- **Water Demand 2050**: 1.2 TWh/y (Power for Desalination)
New Approach for Site Ranking

- Prerequisite: GIS data for resources and infrastructure
- Idea, giving Points to:
 - Level of available resource
 - Distance to the electricity grid
 - Distance to settlements
 - Distance to infrastructure
- Ranking based on the sum of points.
Determination of weights - DNI
Determination of weights – Population and Infrastructure

Population

Streets

Electricity Network
Site Ranking for CSP Tunisia

Site Ranking based on:

<table>
<thead>
<tr>
<th>Resource</th>
<th>Value</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>Max</td>
<td>min</td>
</tr>
<tr>
<td>Resource DNI</td>
<td>1900</td>
<td>2300</td>
</tr>
<tr>
<td>Transmission</td>
<td>0</td>
<td>75</td>
</tr>
<tr>
<td>Substations</td>
<td>0</td>
<td>75</td>
</tr>
<tr>
<td>Settlements</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>Roads</td>
<td>0</td>
<td>50</td>
</tr>
</tbody>
</table>
Good Solar Resource Assessments

- Based on long term data
- Site specific, high spatial resolution
- Sufficient temporal resolution for the application
- Modeled data set has been benchmarked, information on quality is available
- For large projects: Based on different sources (e.g. Satellite and ground data).
Conclusions

- High quality resource assessments are part of the basic infrastructure for market development and investments into an energy technology.

- Nobody would invest in an oil field if he would not have a pretty good idea on what he expects from it.

- Renewable Energy Sources are highly variable in time and space: Their assessment needs a detailed investigation of high quality long term measurements from ground and space which requires a lot of effort.

- Planning infrastructures (as good maps) may be a public good. Everybody profits of it, but no single one will be willing to pay for it alone.
Acknowledgements

- Many thanks for a large number of slides by Detlev Heinemann, University of Oldenburg, Energymeteorology group
- Thanks to Norbert Geuder (DLR/CSP-Services) for a number of slides
- Thanks to Christoph Schillings (DLR), for input for many slides, especially GIS
- Thanks to Benedikt Pulvermüller, Solar Millennium AG, for some slides
- Tanks to a lot of others I forgot.

- Thanks to UNEP, the German Federal Minstriy for the Environment for the financial support
- Thanks for Stellenbosch University for organizing all of this