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Plan 

•  Measuring? 
•  Part I: Instrumentation 
•  Part II: Uncertainties 
•  [Part III: Quality] 
•  Measurement techniques 
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Special slide 

Some tools should be shortly 
defined and usable here 
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Introduction 

•  What is measuring? 
– Determine a numeric value of a physical 

parameter in a given set of conditions 
•  => instrumentation 

– With an evaluated trust of the numeric value 
•  => uncertainties 

– With an evaluated trust of the procedure 
•  => quality 
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It is a science! 

•  Instrumentation + Uncertainties = Metrology 

Metrology is defined by the International Bureau of 
Weights and Measures (BIPM) as 
"the science of measurement, 
embracing both experimental and theoretical 
determinations 
at any level of uncertainty 
in any field of science and technology.” 
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Instrumentation 

MEASURING 
IS 

COMPARING 
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Instrumentation 

•  Measuring: determine a numeric 
evaluation of a physical parameter of a 
process 

– Primary characteristics: time, length, mass… 
– Derived characteristics: speed, surface, mass 

flow, viscosity, specific heat, hardness… 
 

… 
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Instrumentation 

•  Measuring: determine a numeric evaluation of a 
physical quantity of a process… 

•  …With comparison to a reference quantity 
=> Number + Unit 
 

What is the length of the car? 4,3 m 
What is the temperature of the oil? 235 °C 

How strong is the DNI of the sun? 954 W/m2 
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Instrumentation 

MEASURING 
IS 

COMPARING 
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The SI system of units 

•  7 units to define it all: 
– Temperature => kelvin 
– Time => second 
– Length => meter 
– Mass => kilogram 
– Luminous intensity => candela 
– Quantity of matter => mole 
– Electric current => ampere 



CNRS-PROMES E. Guillot — SFERA Summer School 2013 13 

The SI system of units 
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The SI system of units 

•  Definitions of the units? Universal! 
–  It should be stable in time 
– With a repeatable procedure 

⇒ Second = number of pulsations of transition state of Cesium 
 
⇒ Meter = distance travelled by light in vacuum in 1 second 
 
⇒ Mole = as many as many atoms in 12 mg of Carbon 12 

⇒ … 

⇒ Kilogram = mass of the International Prototype Kilogram 
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The SI system of units 

•  SI = Système International d'unités 
•  French Revolution: Universal for Mankind 

=> including the measurement system 
=> still many things in French by French organisations 
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Traceability 

MEASURING 
IS 

COMPARING 
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Traceability 

International References 
 

National References 
 

Regional / Private References 
 

User Measurements 
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Comparison: 
Process of Measurement 

Comparison 
Process 

Quantity 
to be determined 

X 

Reference 
[X] 

Measurement result 
{X} 
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Process of measurement 

Direct quantity 
 

Width of a rectangle 

width 
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Process of measurement 

Example of indirect quantity 
 

Surface of a rectangle 
 

S = h x w 

height 

width 
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Process of measurement 
Comparison 

Process Width W Reference 
[meter] 

Measurement result 
{W} 

Comparison 
Process Height H Reference 

[meter] 

Measurement result 
{H} 

Formula 
f(W,H) = W x H 
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One observation of a measurement 

•  At the end, a numeric evaluation with a unit 

The width of the rectangle is 
13,45 cm 

 
The surface of the rectangle is 

127 cm2 
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Reference 

Guide to the expression of 
Uncertainty in 
Measurement 

JCGM 104:2009 
 

  © JCGM 2009 – All rights reserved 

Document produced by Working Group 1 of the Joint 
Committee for Guides in Metrology (JCGM/WG 1). 
 
 
Copyright of this document is shared jointly by the 
JCGM member organizations (BIPM, IEC, IFCC, 
ILAC, ISO, IUPAC, IUPAP and OIML). 

Document produit par le Groupe de travail 1 du 
Comité commun pour les guides en métrologie 
(JCGM/WG 1). 
 
Les droits d’auteur relatifs à ce document sont la 
propriété conjointe des organisations membres du 
JCGM (BIPM, CEI, IFCC, ILAC, ISO, UICPA, UIPPA 
et OIML). 

 

 

 

Copyrights 

Even if the electronic version of this document is 
available free of charge on the BIPM’s website 
(www.bipm.org), copyright of this document is 
shared jointly by the JCGM member organizations, 
and all respective logos and emblems are vested in 
them and are internationally protected. Third parties 
cannot rewrite or re-brand this document, issue or 
sell copies to the public, broadcast or use it on-line. 
For all commercial use, reproduction or translation of 
this document and/or of the logos, emblems, 
publications or other creations contained therein, the 
prior written permission of the Director of the BIPM 
must be obtained. 

 

 

 

Droits d’auteur 

Même si une version électronique de ce document 
peut être téléchargée gratuitement sur le site internet 
du BIPM (www.bipm.org), les droits d’auteur relatifs 
à ce document sont la propriété conjointe des 
organisations membres du JCGM et l’ensemble de 
leurs logos et emblèmes respectifs leur appartien-
nent et font l’objet d’une protection internationale. 
Les tiers ne peuvent le réécrire ou le modifier, le 
distribuer ou vendre des copies au public, le diffuser 
ou le mettre en ligne. Tout usage commercial, 
reproduction ou traduction de ce document et/ou des 
logos, emblèmes et/ou publications qu’il comporte, 
doit recevoir l’autorisation écrite préalable du 
directeur du BIPM. 

 
 
 
 
 

     

      
 
 



CNRS-PROMES E. Guillot — SFERA Summer School 2013 25 

MEASURING 
IS 

COMPARING 
 

But how good is the 
comparison? 

 
How trustworthy is it? 

 



CNRS-PROMES E. Guillot — SFERA Summer School 2013 26 

Process of measurement 

Comparison 
Process 

Characteristic 
to be determined 

X 

Reference 
[X] 

Measurement result 
{X} 

Parasite influences 

Parasite influences Parasite influences 

Parasite influences 
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Uncertainties 

Provide a reasonable evaluation 
of how much doubt we have 

about the numeric evaluation of the 
measurement 

 
 
 

The Truth Is Out There 
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Uncertainty 

 Measurement = number + unit + uncertainty 

the length of the truck is 
 

12,5 m ± 0,1 m with 95 % confidence 
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Significance of differences Significance of Differences

Xa Xb

U95

Not Significant

Significant

Xa Xb

From WMO — Instruments And Observing Methods Report No. 86  
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Conformity tests 
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Modelisation of a measurement 

 
 
 

{One observed value} 
 
= 
 

(True value) 
+ 

(systematic error) 
+ 

(random error) 
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Modelisation of a measurement 

Mean of 
an infinite set of 
Measurements 

True 
Value 

Systematic error 

Random error 

Results of the 
Measurement 
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Systematic error 
If a systematic error arises from a recognized 
effect of an influence quantity on a measurement 
result, 
the effect can be quantified and, if it is significant in 
size relative to the required accuracy of the 
measurement, 
a correction or a correction factor can be applied 
to compensate for the effect. 
 
It is assumed that, after correction, the expectation 
or expected value of the error arising from a 
systematic effect is zero. 
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Systematic error 

•  Examples: 
– While measuring a resistance, the connection 

wires => Robserverd = Runknown + Rwires 

– The thermal expansion of a ruler 
=> L = L0 + α • ∆T 

– A systematic bias observed during calibration 
of the sensor 
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Random error 
Random error presumably arises from unpredictable 
or stochastic temporal and spatial variations of 
influence quantities. 
 
The effects of such variations give rise to variations in 
repeated observations of the measurand. 
 
Although it is not possible to compensate for the 
random error of a measurement result, it can usually 
be reduced by increasing the number of 
observations; its expectation or expected value is zero. 
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Uncertainty evaluation 

•  Systematic errors can be reduced with a 
correction 

 => but we only have an estimate of the 
 correction 

•  Random error can be reduced with a large 
number of observations 

 => effect of the size of the set on the 
 estimate knowledge?? 
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Uncertainty evaluation 

•  Method: 

1.  Describe the measurement: list all the 

influence quantities 

2.  Determine each quantity 

3.  Determine the uncertainty for each quantity 

4.  Calculate the combined uncertainty 

5.  Calculate the expanded uncertainty 
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Uncertainty evaluation 

1.  Describe the measurement 
Y is determined from N quantities Xi 

Comparison 
Process Width W Reference 

[meter] 

Measurement result 
{W} 

Comparison 
Process Height H Reference 

[meter] 

Measurement result 
{H} 

Formula 
F(W,H) = W x H 

JCGM 100:2008 
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3.4.5 It often occurs in practice, especially in the domain of legal metrology, that a device is tested through 
a comparison with a measurement standard and the uncertainties associated with the standard and the 
comparison procedure are negligible relative to the required accuracy of the test. An example is the use of a 
set of well-calibrated standards of mass to test the accuracy of a commercial scale. In such cases, because 
the components of uncertainty are small enough to be ignored, the measurement may be viewed as 
determining the error of the device under test. (See also F.2.4.2.) 

3.4.6 The estimate of the value of a measurand provided by the result of a measurement is sometimes 
expressed in terms of the adopted value of a measurement standard rather than in terms of the relevant unit 
of the International System of Units (SI). In such cases, the magnitude of the uncertainty ascribable to the 
measurement result may be significantly smaller than when that result is expressed in the relevant SI unit. (In 
effect, the measurand has been redefined to be the ratio of the value of the quantity to be measured to the 
adopted value of the standard.) 

EXAMPLE A high-quality Zener voltage standard is calibrated by comparison with a Josephson effect voltage 
reference based on the conventional value of the Josephson constant recommended for international use by the CIPM. 
The relative combined standard uncertainty uc(VS)/VS (see 5.1.6) of the calibrated potential difference VS of the Zener 
standard is 2 × 10í8 when VS is reported in terms of the conventional value, but uc(VS)/VS is 4 × 10í7 when VS is reported 
in terms of the SI unit of potential difference, the volt (V), because of the additional uncertainty associated with the SI 
value of the Josephson constant. 

3.4.7 Blunders in recording or analysing data can introduce a significant unknown error in the result of a 
measurement. Large blunders can usually be identified by a proper review of the data; small ones could be 
masked by, or even appear as, random variations. Measures of uncertainty are not intended to account for 
such mistakes. 

3.4.8 Although this Guide provides a framework for assessing uncertainty, it cannot substitute for critical 
thinking, intellectual honesty and professional skill. The evaluation of uncertainty is neither a routine task nor a 
purely mathematical one; it depends on detailed knowledge of the nature of the measurand and of the 
measurement. The quality and utility of the uncertainty quoted for the result of a measurement therefore 
ultimately depend on the understanding, critical analysis, and integrity of those who contribute to the 
assignment of its value. 

4 Evaluating standard uncertainty 

Additional guidance on evaluating uncertainty components, mainly of a practical nature, may be found in 
Annex F. 

4.1 Modelling the measurement 

4.1.1 In most cases, a measurand Y is not measured directly, but is determined from N other quantities 
X1, X2, ..., XN through a functional relationship f : 

( )1 2, , ..., NY f X X X=  (1) 

NOTE 1 For economy of notation, in this Guide the same symbol is used for the physical quantity (the measurand) and 
for the random variable (see 4.2.1) that represents the possible outcome of an observation of that quantity. When it is 
stated that Xi has a particular probability distribution, the symbol is used in the latter sense; it is assumed that the physical 
quantity itself can be characterized by an essentially unique value (see 1.2 and 3.1.3). 

NOTE 2 In a series of observations, the kth observed value of Xi is denoted by Xi,k ; hence if R denotes the resistance 
of a resistor, the kth observed value of the resistance is denoted by Rk . 

NOTE 3 The estimate of Xi (strictly speaking, of its expectation) is denoted by xi. 
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5Ms — Ishikawa — Fishbone 

Man Machine 

Process Environment Material 

Uncertainty of the 
Measurement 
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5M — Ishikawa — Fishbone 
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Uncertainty evaluation 

•  Method: 

1.  Describe the measurement: list all the 

influence quantities 

2.  Determine each quantity 

3.  Determine the uncertainty for each quantity 

4.  Calculate the combined uncertainty 

5.  Calculate the expanded uncertainty 
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Uncertainty evaluation 

3. Determine the uncertainty for each quantity 
 

 => 2 cases: 

  - Repeated observations => TYPE A 

  - Other evaluation => TYPE B 
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JCGM 100:2008 
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4.1.6 Each input estimate xi and its associated standard uncertainty u(xi) are obtained from a distribution of 
possible values of the input quantity Xi . This probability distribution may be frequency based, that is, based on 
a series of observations Xi,k of Xi , or it may be an a priori distribution. Type A evaluations of standard 
uncertainty components are founded on frequency distributions while Type B evaluations are founded on a 
priori distributions. It must be recognized that in both cases the distributions are models that are used to 
represent the state of our knowledge. 

4.2 Type A evaluation of standard uncertainty 

4.2.1 In most cases, the best available estimate of the expectation or expected value µq of a quantity q that 
varies randomly [a random variable (C.2.2)], and for which n independent observations qk have been 
obtained under the same conditions of measurement (see B.2.15), is the arithmetic mean or average q  
(C.2.19) of the n observations: 

1

1 n

k
k

q q
n =

= ¦  (3) 

Thus, for an input quantity Xi estimated from n independent repeated observations Xi,k , the arithmetic mean 
iX  obtained from Equation (3) is used as the input estimate xi in Equation (2) to determine the measurement 

result y; that is, i ix X= . Those input estimates not evaluated from repeated observations must be obtained by 
other methods, such as those indicated in the second category of 4.1.3. 

4.2.2 The individual observations qk differ in value because of random variations in the influence quantities, 
or random effects (see 3.2.2). The experimental variance of the observations, which estimates the variance 
σ 2 of the probability distribution of q, is given by 

( ) ( )22

1

1
1

n

k j
j

s q q q
n =

= −
− ¦  (4) 

This estimate of variance and its positive square root s(qk), termed the experimental standard deviation 
(B.2.17), characterize the variability of the observed values qk , or more specifically, their dispersion about their 
mean q . 

4.2.3 The best estimate of ( )2 2q nσ σ= , the variance of the mean, is given by 

( ) ( )2
2 ks q
s q

n
=  (5) 

The experimental variance of the mean 2( )s q  and the experimental standard deviation of the mean ( )s q  
(B.2.17, Note 2), equal to the positive square root of 2( )s q , quantify how well q  estimates the expectation µq 
of q, and either may be used as a measure of the uncertainty of q . 

Thus, for an input quantity Xi determined from n independent repeated observations Xi,k , the standard 
uncertainty u(xi) of its estimate i ix X=  is ( ) ( )i iu x s X= , with 2 ( )is X  calculated according to Equation (5). For 
convenience, 2 2( ) ( )i iu x s X=  and ( ) ( )i iu x s X=  are sometimes called a Type A variance and a Type A 
standard uncertainty, respectively. 

NOTE 1 The number of observations n should be large enough to ensure that q  provides a reliable estimate of the 
expectation µq of the random variable q and that 2( )s q  provides a reliable estimate of the variance 2 2( )q nσ σ=  (see 
4.3.2, note). The difference between 2( )s q  and 2( )qσ  must be considered when one constructs confidence intervals (see 
6.2.2). In this case, if the probability distribution of q is a normal distribution (see 4.3.4), the difference is taken into account 
through the t-distribution (see G.3.2). 

NOTE 2 Although the variance 2( )s q  is the more fundamental quantity, the standard deviation ( )s q  is more 
convenient in practice because it has the same dimension as q and a more easily comprehended value than that of the 
variance. 

Uncertainty Type A 

If we have n repeated observations: 

⇒ The best estimate of the quantity is the mean 

⇒ The best estimate of the uncertainty is  

      with  

JCGM 100:2008 
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4.1.6 Each input estimate xi and its associated standard uncertainty u(xi) are obtained from a distribution of 
possible values of the input quantity Xi . This probability distribution may be frequency based, that is, based on 
a series of observations Xi,k of Xi , or it may be an a priori distribution. Type A evaluations of standard 
uncertainty components are founded on frequency distributions while Type B evaluations are founded on a 
priori distributions. It must be recognized that in both cases the distributions are models that are used to 
represent the state of our knowledge. 

4.2 Type A evaluation of standard uncertainty 

4.2.1 In most cases, the best available estimate of the expectation or expected value µq of a quantity q that 
varies randomly [a random variable (C.2.2)], and for which n independent observations qk have been 
obtained under the same conditions of measurement (see B.2.15), is the arithmetic mean or average q  
(C.2.19) of the n observations: 

1

1 n

k
k

q q
n =

= ¦  (3) 

Thus, for an input quantity Xi estimated from n independent repeated observations Xi,k , the arithmetic mean 
iX  obtained from Equation (3) is used as the input estimate xi in Equation (2) to determine the measurement 

result y; that is, i ix X= . Those input estimates not evaluated from repeated observations must be obtained by 
other methods, such as those indicated in the second category of 4.1.3. 

4.2.2 The individual observations qk differ in value because of random variations in the influence quantities, 
or random effects (see 3.2.2). The experimental variance of the observations, which estimates the variance 
σ 2 of the probability distribution of q, is given by 

( ) ( )22

1

1
1

n

k j
j

s q q q
n =

= −
− ¦  (4) 

This estimate of variance and its positive square root s(qk), termed the experimental standard deviation 
(B.2.17), characterize the variability of the observed values qk , or more specifically, their dispersion about their 
mean q . 

4.2.3 The best estimate of ( )2 2q nσ σ= , the variance of the mean, is given by 

( ) ( )2
2 ks q
s q

n
=  (5) 

The experimental variance of the mean 2( )s q  and the experimental standard deviation of the mean ( )s q  
(B.2.17, Note 2), equal to the positive square root of 2( )s q , quantify how well q  estimates the expectation µq 
of q, and either may be used as a measure of the uncertainty of q . 

Thus, for an input quantity Xi determined from n independent repeated observations Xi,k , the standard 
uncertainty u(xi) of its estimate i ix X=  is ( ) ( )i iu x s X= , with 2 ( )is X  calculated according to Equation (5). For 
convenience, 2 2( ) ( )i iu x s X=  and ( ) ( )i iu x s X=  are sometimes called a Type A variance and a Type A 
standard uncertainty, respectively. 

NOTE 1 The number of observations n should be large enough to ensure that q  provides a reliable estimate of the 
expectation µq of the random variable q and that 2( )s q  provides a reliable estimate of the variance 2 2( )q nσ σ=  (see 
4.3.2, note). The difference between 2( )s q  and 2( )qσ  must be considered when one constructs confidence intervals (see 
6.2.2). In this case, if the probability distribution of q is a normal distribution (see 4.3.4), the difference is taken into account 
through the t-distribution (see G.3.2). 

NOTE 2 Although the variance 2( )s q  is the more fundamental quantity, the standard deviation ( )s q  is more 
convenient in practice because it has the same dimension as q and a more easily comprehended value than that of the 
variance. 
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4.2.4 For a well-characterized measurement under statistical control, a combined or pooled estimate of 

variance 
2
ps  (or a pooled experimental standard deviation sp) that characterizes the measurement may be 

available. In such cases, when the value of a measurand q is determined from n independent observations, 

the experimental variance of the arithmetic mean q  of the observations is estimated better by 2
p ns  than by 

s2(qk)/n  and the standard uncertainty is pu s n= . (See also the Note to H.3.6.) 

4.2.5 Often an estimate xi of an input quantity Xi is obtained from a curve that has been fitted to 

experimental data by the method of least squares. The estimated variances and resulting standard 

uncertainties of the fitted parameters characterizing the curve and of any predicted points can usually be 

calculated by well-known statistical procedures (see H.3 and Reference [8]). 

4.2.6 The degrees of freedom (C.2.31) vi of u(xi) (see G.3), equal to n − 1 in the simple case where i ix X=  

and ( ) ( )i iu x s X=  are calculated from n independent observations as in 4.2.1 and 4.2.3, should always be 

given when Type A evaluations of uncertainty components are documented. 

4.2.7 If the random variations in the observations of an input quantity are correlated, for example, in time, 

the mean and experimental standard deviation of the mean as given in 4.2.1 and 4.2.3 may be inappropriate 

estimators (C.2.25) of the desired statistics (C.2.23). In such cases, the observations should be analysed by 

statistical methods specially designed to treat a series of correlated, randomly-varying measurements. 

NOTE Such specialized methods are used to treat measurements of frequency standards. However, it is possible 

that as one goes from short-term measurements to long-term measurements of other metrological quantities, the 

assumption of uncorrelated random variations may no longer be valid and the specialized methods could be used to treat 

these measurements as well. (See Reference [9], for example, for a detailed discussion of the Allan variance.) 

4.2.8 The discussion of Type A evaluation of standard uncertainty in 4.2.1 to 4.2.7 is not meant to be 

exhaustive; there are many situations, some rather complex, that can be treated by statistical methods. An 

important example is the use of calibration designs, often based on the method of least squares, to evaluate 

the uncertainties arising from both short- and long-term random variations in the results of comparisons of 

material artefacts of unknown values, such as gauge blocks and standards of mass, with reference standards 

of known values. In such comparatively simple measurement situations, components of uncertainty can 

frequently be evaluated by the statistical analysis of data obtained from designs consisting of nested 

sequences of measurements of the measurand for a number of different values of the quantities upon which it 

depends — a so-called analysis of variance (see H.5). 

NOTE At lower levels of the calibration chain, where reference standards are often assumed to be exactly known 

because they have been calibrated by a national or primary standards laboratory, the uncertainty of a calibration result 

may be a single Type A standard uncertainty evaluated from the pooled experimental standard deviation that 

characterizes the measurement. 

4.3 Type B evaluation of standard uncertainty 

4.3.1 For an estimate xi of an input quantity Xi that has not been obtained from repeated observations, the 

associated estimated variance u2(xi) or the standard uncertainty u(xi) is evaluated by scientific judgement 

based on all of the available information on the possible variability of Xi . The pool of information may include 

 previous measurement data; 

 experience with or general knowledge of the behaviour and properties of relevant materials and instruments; 

 manufacturer's specifications; 

 data provided in calibration and other certificates; 

 uncertainties assigned to reference data taken from handbooks. 

For convenience, u2(xi) and u(xi) evaluated in this way are sometimes called a Type B variance and a Type B 
standard uncertainty, respectively. 

NOTE When xi is obtained from an a priori distribution, the associated variance is appropriately written as u2(Xi), but 

for simplicity, u2(xi) and u(xi) are used throughout this Guide. 
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Uncertainty Type B 

If the quantity is not determined from repeated 

observations, the uncertainty is evaluated by 

scientific judgement based on all of the 
available information on the possible variability. 

 
 Examples: • manufacturer's specifications  

  • data provided in calibration and other certificates 

  • uncertainties assigned to reference data taken from 
   handbooks 
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Uncertainty Type B 

⇒ Use the existing knowledge 

⇒ Assume a distribution law of the variations 

⇒ Calculate the uncertainty 
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Uncertainty Type B 

-  For a numeric display ±a 

-  For a hysteresis ±a 

JCGM 100:2008 
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a) 

 
b) 

Figure 2 — Graphical illustration of evaluating the standard uncertainty of an input quantity  
from an a priori distribution 

JCGM 100:2008 
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4.4.4 Figure 2 represents the estimation of the value of an input quantity Xi and the evaluation of the 
uncertainty of that estimate from an a priori distribution of possible values of Xi, or probability distribution of Xi, 
based on all of the available information. For both cases shown, the input quantity is again assumed to be a 
temperature t. 

4.4.5 For the case illustrated in Figure 2 a), it is assumed that little information is available about the input 
quantity t and that all one can do is suppose that t is described by a symmetric, rectangular a priori probability 
distribution of lower bound aí = 96 °C, upper bound a+ = 104 °C, and thus half-width a = (a+ − aí)/2 = 4 °C 
(see 4.3.7). The probability density function of t is then 

( ) ( )

( )

1 2 ,

0, otherwise.

p t a a t a

p t

− +=

=

u u
 

As indicated in 4.3.7, the best estimate of t is its expectation µ t = (a+ + aí)/2 = 100 °C, which follows from 

C.3.1. The standard uncertainty of this estimate is ( ) 3 2,3 Ctu aµ = ≈ ° , which follows from C.3.2 [see 

Equation (7)]. 

4.4.6 For the case illustrated in Figure 2 b), it is assumed that the available information concerning t is less 
limited and that t can be described by a symmetric, triangular a priori probability distribution of the same lower 
bound aí = 96 °C, the same upper bound a+ = 104 °C, and thus the same half-width a = (a+ í aí)/2 = 4 °C as 
in 4.4.5 (see 4.3.9). The probability density function of t is then 

( ) ( ) ( )

( ) ( ) ( )

( )

2

2

, 2

, 2

0, otherwise.

p t t a a a t a a

p t a t a a a t a

p t

− − + −

+ + − +

= − +

= − +

=

u u

u u  

As indicated in 4.3.9, the expectation of t is µ t = (a+ + aí)/2 = 100 °C, which follows from C.3.1. The standard 

uncertainty of this estimate is ( ) 6 1,6 Ctu aµ = ≈ ° , which follows from C.3.2 [see Equation 9 b)]. 

The above value, u(µ t) = 1,6 °C, may be compared with u(µ t) = 2,3 °C obtained in 4.4.5 from a rectangular 
distribution of the same 8 °C width; with σ = 1,5 °C of the normal distribution of Figure 1 a) whose −2,58σ to 
+2,58σ width, which encompasses 99 percent of the distribution, is nearly 8 °C; and with ( ) 0,33 Cu t = °  
obtained in 4.4.3 from 20 observations assumed to have been taken randomly from the same normal 
distribution. 

5 Determining combined standard uncertainty 

5.1 Uncorrelated input quantities 

This subclause treats the case where all input quantities are independent (C.3.7). The case where two or 
more input quantities are related, that is, are interdependent or correlated (C.2.8), is discussed in 5.2. 

5.1.1 The standard uncertainty of y, where y is the estimate of the measurand Y and thus the result of the 
measurement, is obtained by appropriately combining the standard uncertainties of the input estimates 
x1, x2, ..., xN (see 4.1). This combined standard uncertainty of the estimate y is denoted by uc(y). 

NOTE For reasons similar to those given in the note to 4.3.1, the symbols uc(y) and 2
c ( )u y  are used in all cases. 
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Uncertainty evaluation 

•  Method: 

1.  Describe the measurement: list all the 

influence quantities 

2.  Determine each quantity 

3.  Determine the uncertainty for each quantity 

4.  Calculate the combined uncertainty 

5.  Calculate the expanded uncertainty 
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Combined uncertainty 

•  We have the law  

•  We have the Xi and their uncertainties 

=> The combined uncertainty is (uncorrelated quantities) 
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5.1.2 The combined standard uncertainty uc(y) is the positive square root of the combined variance 
2
c ( )u y , 

which is given by 

( ) ( )
2

2 2
c

1

N

i
ii

fu y u x
x=

§ ·∂= ¨ ¸∂© ¹
¦  (10) 

where f  is the function given in Equation (1). Each u(xi) is a standard uncertainty evaluated as described in 4.2 

(Type A evaluation) or as in 4.3 (Type B evaluation). The combined standard uncertainty uc(y) is an estimated 

standard deviation and characterizes the dispersion of the values that could reasonably be attributed to the 

measurand Y (see 2.2.3). 

Equation (10) and its counterpart for correlated input quantities, Equation (13), both of which are based on a 

first-order Taylor series approximation of Y = f (X1, X2, ..., XN), express what is termed in this Guide the law of 
propagation of uncertainty (see E.3.1 and E.3.2). 

NOTE When the nonlinearity of f is significant, higher-order terms in the Taylor series expansion must be included in 

the expression for 
2
c ( )u y , Equation (10). When the distribution of each Xi is normal , the most important terms of next 

highest order to be added to the terms of Equation (10) are 

( ) ( )
2

2 3
2 2

2
1 1

1

2

N N

i j
i j i i ji j

f f f u x u x
x x x x x= =

ª º§ ·∂ ∂ ∂« »¨ ¸ +« »¨ ¸∂ ∂ ∂ ∂ ∂© ¹« »¬ ¼
¦¦  

See H.1 for an example of a situation where the contribution of higher-order terms to 
2
c ( )u y  needs to be considered. 

5.1.3 The partial derivatives �f /�xi are equal to �f /�Xi evaluated at Xi = xi (see Note 1 below). These 

derivatives, often called sensitivity coefficients, describe how the output estimate y varies with changes in the 

values of the input estimates x1, x2, ..., xN. In particular, the change in y produced by a small change ∆xi in 

input estimate xi is given by (∆y)i = (�f/�xi)(∆xi). If this change is generated by the standard uncertainty of the 

estimate xi, the corresponding variation in y is (�f/�xi)u(xi). The combined variance 
2
c ( )u y  can therefore be 

viewed as a sum of terms, each of which represents the estimated variance associated with the output 

estimate y generated by the estimated variance associated with each input estimate xi. This suggests writing 

Equation (10) as 

( ) ( ) ( )22 2
c

1 1

N N

i i i
i i

u y c u x u y
= =
ª º= ≡¬ ¼¦ ¦  (11a) 

where 

( ) ( ),i i i i ic f x u y c u x≡ ∂ ∂ ≡  (11b) 

NOTE 1 Strictly speaking, the partial derivatives are �f/�xi = �f/�Xi evaluated at the expectations of the Xi. However, in 

practice, the partial derivatives are estimated by 

1 2, , ...,i i
N

f f
x X x x x

∂ ∂=
∂ ∂

 

NOTE 2 The combined standard uncertainty uc(y) may be calculated numerically by replacing ciu(xi) in Equation (11a) 

with 

( ) ( ){ }1 1

1
, ..., , ..., , ..., , ...,

2
i i i N i i NZ f x x u x x f x x u x xª º ª º= + − −¬ ¼ ¬ ¼  

That is, ui(y) is evaluated numerically by calculating the change in y due to a change in xi of +u(xi) and of −u(xi). The value 

of ui(y) may then be taken as ŇZiŇ and the value of the corresponding sensitivity coefficient ci as Zi/u(xi). 

JCGM 100:2008 

 

© JCGM 2008 – All rights reserved  11
 

4.2.4 For a well-characterized measurement under statistical control, a combined or pooled estimate of 

variance 
2
ps  (or a pooled experimental standard deviation sp) that characterizes the measurement may be 

available. In such cases, when the value of a measurand q is determined from n independent observations, 

the experimental variance of the arithmetic mean q  of the observations is estimated better by 2
p ns  than by 

s2(qk)/n  and the standard uncertainty is pu s n= . (See also the Note to H.3.6.) 

4.2.5 Often an estimate xi of an input quantity Xi is obtained from a curve that has been fitted to 

experimental data by the method of least squares. The estimated variances and resulting standard 

uncertainties of the fitted parameters characterizing the curve and of any predicted points can usually be 

calculated by well-known statistical procedures (see H.3 and Reference [8]). 

4.2.6 The degrees of freedom (C.2.31) vi of u(xi) (see G.3), equal to n − 1 in the simple case where i ix X=  

and ( ) ( )i iu x s X=  are calculated from n independent observations as in 4.2.1 and 4.2.3, should always be 

given when Type A evaluations of uncertainty components are documented. 

4.2.7 If the random variations in the observations of an input quantity are correlated, for example, in time, 

the mean and experimental standard deviation of the mean as given in 4.2.1 and 4.2.3 may be inappropriate 

estimators (C.2.25) of the desired statistics (C.2.23). In such cases, the observations should be analysed by 

statistical methods specially designed to treat a series of correlated, randomly-varying measurements. 

NOTE Such specialized methods are used to treat measurements of frequency standards. However, it is possible 

that as one goes from short-term measurements to long-term measurements of other metrological quantities, the 

assumption of uncorrelated random variations may no longer be valid and the specialized methods could be used to treat 

these measurements as well. (See Reference [9], for example, for a detailed discussion of the Allan variance.) 

4.2.8 The discussion of Type A evaluation of standard uncertainty in 4.2.1 to 4.2.7 is not meant to be 

exhaustive; there are many situations, some rather complex, that can be treated by statistical methods. An 

important example is the use of calibration designs, often based on the method of least squares, to evaluate 

the uncertainties arising from both short- and long-term random variations in the results of comparisons of 

material artefacts of unknown values, such as gauge blocks and standards of mass, with reference standards 

of known values. In such comparatively simple measurement situations, components of uncertainty can 

frequently be evaluated by the statistical analysis of data obtained from designs consisting of nested 

sequences of measurements of the measurand for a number of different values of the quantities upon which it 

depends — a so-called analysis of variance (see H.5). 

NOTE At lower levels of the calibration chain, where reference standards are often assumed to be exactly known 

because they have been calibrated by a national or primary standards laboratory, the uncertainty of a calibration result 

may be a single Type A standard uncertainty evaluated from the pooled experimental standard deviation that 

characterizes the measurement. 

4.3 Type B evaluation of standard uncertainty 

4.3.1 For an estimate xi of an input quantity Xi that has not been obtained from repeated observations, the 

associated estimated variance u2(xi) or the standard uncertainty u(xi) is evaluated by scientific judgement 

based on all of the available information on the possible variability of Xi . The pool of information may include 

 previous measurement data; 

 experience with or general knowledge of the behaviour and properties of relevant materials and instruments; 

 manufacturer's specifications; 

 data provided in calibration and other certificates; 

 uncertainties assigned to reference data taken from handbooks. 

For convenience, u2(xi) and u(xi) evaluated in this way are sometimes called a Type B variance and a Type B 
standard uncertainty, respectively. 

NOTE When xi is obtained from an a priori distribution, the associated variance is appropriately written as u2(Xi), but 

for simplicity, u2(xi) and u(xi) are used throughout this Guide. 
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4.4.4 Figure 2 represents the estimation of the value of an input quantity Xi and the evaluation of the 
uncertainty of that estimate from an a priori distribution of possible values of Xi, or probability distribution of Xi, 
based on all of the available information. For both cases shown, the input quantity is again assumed to be a 
temperature t. 

4.4.5 For the case illustrated in Figure 2 a), it is assumed that little information is available about the input 
quantity t and that all one can do is suppose that t is described by a symmetric, rectangular a priori probability 
distribution of lower bound aí = 96 °C, upper bound a+ = 104 °C, and thus half-width a = (a+ − aí)/2 = 4 °C 
(see 4.3.7). The probability density function of t is then 

( ) ( )

( )

1 2 ,

0, otherwise.

p t a a t a

p t

− +=

=

u u
 

As indicated in 4.3.7, the best estimate of t is its expectation µ t = (a+ + aí)/2 = 100 °C, which follows from 

C.3.1. The standard uncertainty of this estimate is ( ) 3 2,3 Ctu aµ = ≈ ° , which follows from C.3.2 [see 

Equation (7)]. 

4.4.6 For the case illustrated in Figure 2 b), it is assumed that the available information concerning t is less 
limited and that t can be described by a symmetric, triangular a priori probability distribution of the same lower 
bound aí = 96 °C, the same upper bound a+ = 104 °C, and thus the same half-width a = (a+ í aí)/2 = 4 °C as 
in 4.4.5 (see 4.3.9). The probability density function of t is then 

( ) ( ) ( )

( ) ( ) ( )

( )

2

2

, 2

, 2

0, otherwise.

p t t a a a t a a

p t a t a a a t a

p t

− − + −

+ + − +

= − +

= − +

=

u u

u u  

As indicated in 4.3.9, the expectation of t is µ t = (a+ + aí)/2 = 100 °C, which follows from C.3.1. The standard 

uncertainty of this estimate is ( ) 6 1,6 Ctu aµ = ≈ ° , which follows from C.3.2 [see Equation 9 b)]. 

The above value, u(µ t) = 1,6 °C, may be compared with u(µ t) = 2,3 °C obtained in 4.4.5 from a rectangular 
distribution of the same 8 °C width; with σ = 1,5 °C of the normal distribution of Figure 1 a) whose −2,58σ to 
+2,58σ width, which encompasses 99 percent of the distribution, is nearly 8 °C; and with ( ) 0,33 Cu t = °  
obtained in 4.4.3 from 20 observations assumed to have been taken randomly from the same normal 
distribution. 

5 Determining combined standard uncertainty 

5.1 Uncorrelated input quantities 

This subclause treats the case where all input quantities are independent (C.3.7). The case where two or 
more input quantities are related, that is, are interdependent or correlated (C.2.8), is discussed in 5.2. 

5.1.1 The standard uncertainty of y, where y is the estimate of the measurand Y and thus the result of the 
measurement, is obtained by appropriately combining the standard uncertainties of the input estimates 
x1, x2, ..., xN (see 4.1). This combined standard uncertainty of the estimate y is denoted by uc(y). 

NOTE For reasons similar to those given in the note to 4.3.1, the symbols uc(y) and 2
c ( )u y  are used in all cases. 
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5.1.2 The combined standard uncertainty uc(y) is the positive square root of the combined variance 
2
c ( )u y , 

which is given by 

( ) ( )
2

2 2
c

1

N

i
ii

fu y u x
x=

§ ·∂= ¨ ¸∂© ¹
¦  (10) 

where f  is the function given in Equation (1). Each u(xi) is a standard uncertainty evaluated as described in 4.2 

(Type A evaluation) or as in 4.3 (Type B evaluation). The combined standard uncertainty uc(y) is an estimated 

standard deviation and characterizes the dispersion of the values that could reasonably be attributed to the 

measurand Y (see 2.2.3). 

Equation (10) and its counterpart for correlated input quantities, Equation (13), both of which are based on a 

first-order Taylor series approximation of Y = f (X1, X2, ..., XN), express what is termed in this Guide the law of 
propagation of uncertainty (see E.3.1 and E.3.2). 

NOTE When the nonlinearity of f is significant, higher-order terms in the Taylor series expansion must be included in 

the expression for 
2
c ( )u y , Equation (10). When the distribution of each Xi is normal , the most important terms of next 

highest order to be added to the terms of Equation (10) are 

( ) ( )
2

2 3
2 2

2
1 1

1

2

N N

i j
i j i i ji j

f f f u x u x
x x x x x= =

ª º§ ·∂ ∂ ∂« »¨ ¸ +« »¨ ¸∂ ∂ ∂ ∂ ∂© ¹« »¬ ¼
¦¦  

See H.1 for an example of a situation where the contribution of higher-order terms to 
2
c ( )u y  needs to be considered. 

5.1.3 The partial derivatives �f /�xi are equal to �f /�Xi evaluated at Xi = xi (see Note 1 below). These 

derivatives, often called sensitivity coefficients, describe how the output estimate y varies with changes in the 

values of the input estimates x1, x2, ..., xN. In particular, the change in y produced by a small change ∆xi in 

input estimate xi is given by (∆y)i = (�f/�xi)(∆xi). If this change is generated by the standard uncertainty of the 

estimate xi, the corresponding variation in y is (�f/�xi)u(xi). The combined variance 
2
c ( )u y  can therefore be 

viewed as a sum of terms, each of which represents the estimated variance associated with the output 

estimate y generated by the estimated variance associated with each input estimate xi. This suggests writing 

Equation (10) as 

( ) ( ) ( )22 2
c

1 1

N N

i i i
i i

u y c u x u y
= =
ª º= ≡¬ ¼¦ ¦  (11a) 

where 

( ) ( ),i i i i ic f x u y c u x≡ ∂ ∂ ≡  (11b) 

NOTE 1 Strictly speaking, the partial derivatives are �f/�xi = �f/�Xi evaluated at the expectations of the Xi. However, in 

practice, the partial derivatives are estimated by 

1 2, , ...,i i
N

f f
x X x x x

∂ ∂=
∂ ∂

 

NOTE 2 The combined standard uncertainty uc(y) may be calculated numerically by replacing ciu(xi) in Equation (11a) 

with 

( ) ( ){ }1 1

1
, ..., , ..., , ..., , ...,

2
i i i N i i NZ f x x u x x f x x u x xª º ª º= + − −¬ ¼ ¬ ¼  

That is, ui(y) is evaluated numerically by calculating the change in y due to a change in xi of +u(xi) and of −u(xi). The value 

of ui(y) may then be taken as ŇZiŇ and the value of the corresponding sensitivity coefficient ci as Zi/u(xi). 
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3.4.5 It often occurs in practice, especially in the domain of legal metrology, that a device is tested through 
a comparison with a measurement standard and the uncertainties associated with the standard and the 
comparison procedure are negligible relative to the required accuracy of the test. An example is the use of a 
set of well-calibrated standards of mass to test the accuracy of a commercial scale. In such cases, because 
the components of uncertainty are small enough to be ignored, the measurement may be viewed as 
determining the error of the device under test. (See also F.2.4.2.) 

3.4.6 The estimate of the value of a measurand provided by the result of a measurement is sometimes 
expressed in terms of the adopted value of a measurement standard rather than in terms of the relevant unit 
of the International System of Units (SI). In such cases, the magnitude of the uncertainty ascribable to the 
measurement result may be significantly smaller than when that result is expressed in the relevant SI unit. (In 
effect, the measurand has been redefined to be the ratio of the value of the quantity to be measured to the 
adopted value of the standard.) 

EXAMPLE A high-quality Zener voltage standard is calibrated by comparison with a Josephson effect voltage 
reference based on the conventional value of the Josephson constant recommended for international use by the CIPM. 
The relative combined standard uncertainty uc(VS)/VS (see 5.1.6) of the calibrated potential difference VS of the Zener 
standard is 2 × 10í8 when VS is reported in terms of the conventional value, but uc(VS)/VS is 4 × 10í7 when VS is reported 
in terms of the SI unit of potential difference, the volt (V), because of the additional uncertainty associated with the SI 
value of the Josephson constant. 

3.4.7 Blunders in recording or analysing data can introduce a significant unknown error in the result of a 
measurement. Large blunders can usually be identified by a proper review of the data; small ones could be 
masked by, or even appear as, random variations. Measures of uncertainty are not intended to account for 
such mistakes. 

3.4.8 Although this Guide provides a framework for assessing uncertainty, it cannot substitute for critical 
thinking, intellectual honesty and professional skill. The evaluation of uncertainty is neither a routine task nor a 
purely mathematical one; it depends on detailed knowledge of the nature of the measurand and of the 
measurement. The quality and utility of the uncertainty quoted for the result of a measurement therefore 
ultimately depend on the understanding, critical analysis, and integrity of those who contribute to the 
assignment of its value. 

4 Evaluating standard uncertainty 

Additional guidance on evaluating uncertainty components, mainly of a practical nature, may be found in 
Annex F. 

4.1 Modelling the measurement 

4.1.1 In most cases, a measurand Y is not measured directly, but is determined from N other quantities 
X1, X2, ..., XN through a functional relationship f : 

( )1 2, , ..., NY f X X X=  (1) 

NOTE 1 For economy of notation, in this Guide the same symbol is used for the physical quantity (the measurand) and 
for the random variable (see 4.2.1) that represents the possible outcome of an observation of that quantity. When it is 
stated that Xi has a particular probability distribution, the symbol is used in the latter sense; it is assumed that the physical 
quantity itself can be characterized by an essentially unique value (see 1.2 and 3.1.3). 

NOTE 2 In a series of observations, the kth observed value of Xi is denoted by Xi,k ; hence if R denotes the resistance 
of a resistor, the kth observed value of the resistance is denoted by Rk . 

NOTE 3 The estimate of Xi (strictly speaking, of its expectation) is denoted by xi. 
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Combined uncertainties 
•  Example: 

 additive measurement of 2 quantities with equi-
 probable distributions 

JCGM 104:2009

-

-
Y = X1 + X2

-
�

� @
@

Figure 3 — An additive measurement function with two input quantities X1 and X2 characterized by

rectangular probability distributions

4.11 Often an interval containing Y with a specified probability is required. Such an interval, a coverage

interval [JCGM 200:2008 (VIM) 2.36], can be deduced from the probability distribution for Y . The specified
probability is known as the coverage probability [JCGM 200:2008 (VIM) 2.37].

4.12 For a given coverage probability, there is more than one coverage interval,

a) the probabilistically symmetric coverage interval [JCGM 101:2008 3.15], for which the probabilities (sum-
ming to one minus the coverage probability) of a value to the left and the right of the interval are equal,
and

b) the shortest coverage interval [JCGM 101:2008 3.16], for which the length is least over all coverage intervals
having the same coverage probability.

4.13 Figure 4 shows a probability distribution (a truncated and scaled Gaussian distribution, indicated
by the decreasing curve) with the endpoints of the shortest (continuous blue vertical lines) and those of the
probabilistically symmetric (broken red vertical lines) 95 % coverage intervals for a quantity characterized by
this distribution. The distribution is asymmetric and the two coverage intervals are di↵erent (most notably their
right-hand endpoints). The shortest coverage interval has its left-hand endpoint at zero, the smallest possible
value for the quantity. The probabilistically symmetric coverage interval in this case is 15% longer than the
shortest coverage interval.

4.14 Sensitivity coe�cients c1, . . . , cN [JCGM 100:2008 (GUM) 5.1.3] describe how the estimate y of Y

would be influenced by small changes in the estimates x1, . . . , xN of the input quantities X1, . . . ,XN . For
the measurement function (1), ci equals the partial derivative of first order of f with respect to Xi evaluated
at X1 = x1, X2 = x2, etc. For the linear measurement function

Y = c1X1 + · · · + cNXN , (3)

with X1, . . . ,XN independent, a change in xi equal to u(xi) would give a change ciu(xi) in y. This statement
would generally be approximate for the measurement models (1) and (2) (see 7.2.4). The relative magnitudes of
the terms |ci|u(xi) are useful in assessing the respective contributions from the input quantities to the standard
uncertainty u(y) associated with y.

4.15 The standard uncertainty u(y) associated with the estimate y of the output quantity Y is not given by
the sum of the |ci|u(xi), but these terms combined in quadrature [JCGM 100:2008 (GUM) 5.1.3], namely by
(an expression that is generally approximate for the measurement models (1) and (2))

u

2(y) = c

2
1u

2(x1) + · · · + c

2
Nu

2(xN ). (4)

4.16 When the input quantities Xi contain dependencies, formula (4) is augmented by terms containing
covariances [JCGM 100:2008 (GUM) 5.2.2], which may increase or decrease u(y).

4.17 According to Resolution 10 of the 22nd CGPM (2003) “ . . . the symbol for the decimal marker shall be
either the point on the line or the comma on the line . . . ”. The JCGM has decided to adopt, in its documents

c� JCGM 2009— All rights reserved 7
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5.1.2 The combined standard uncertainty uc(y) is the positive square root of the combined variance 
2
c ( )u y , 

which is given by 

( ) ( )
2

2 2
c

1

N

i
ii

fu y u x
x=

§ ·∂= ¨ ¸∂© ¹
¦  (10) 

where f  is the function given in Equation (1). Each u(xi) is a standard uncertainty evaluated as described in 4.2 

(Type A evaluation) or as in 4.3 (Type B evaluation). The combined standard uncertainty uc(y) is an estimated 

standard deviation and characterizes the dispersion of the values that could reasonably be attributed to the 

measurand Y (see 2.2.3). 

Equation (10) and its counterpart for correlated input quantities, Equation (13), both of which are based on a 

first-order Taylor series approximation of Y = f (X1, X2, ..., XN), express what is termed in this Guide the law of 
propagation of uncertainty (see E.3.1 and E.3.2). 

NOTE When the nonlinearity of f is significant, higher-order terms in the Taylor series expansion must be included in 

the expression for 
2
c ( )u y , Equation (10). When the distribution of each Xi is normal , the most important terms of next 

highest order to be added to the terms of Equation (10) are 

( ) ( )
2

2 3
2 2

2
1 1

1

2

N N

i j
i j i i ji j

f f f u x u x
x x x x x= =
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See H.1 for an example of a situation where the contribution of higher-order terms to 
2
c ( )u y  needs to be considered. 

5.1.3 The partial derivatives �f /�xi are equal to �f /�Xi evaluated at Xi = xi (see Note 1 below). These 

derivatives, often called sensitivity coefficients, describe how the output estimate y varies with changes in the 

values of the input estimates x1, x2, ..., xN. In particular, the change in y produced by a small change ∆xi in 

input estimate xi is given by (∆y)i = (�f/�xi)(∆xi). If this change is generated by the standard uncertainty of the 

estimate xi, the corresponding variation in y is (�f/�xi)u(xi). The combined variance 
2
c ( )u y  can therefore be 

viewed as a sum of terms, each of which represents the estimated variance associated with the output 

estimate y generated by the estimated variance associated with each input estimate xi. This suggests writing 

Equation (10) as 

( ) ( ) ( )22 2
c

1 1

N N

i i i
i i

u y c u x u y
= =
ª º= ≡¬ ¼¦ ¦  (11a) 

where 

( ) ( ),i i i i ic f x u y c u x≡ ∂ ∂ ≡  (11b) 

NOTE 1 Strictly speaking, the partial derivatives are �f/�xi = �f/�Xi evaluated at the expectations of the Xi. However, in 

practice, the partial derivatives are estimated by 

1 2, , ...,i i
N

f f
x X x x x

∂ ∂=
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NOTE 2 The combined standard uncertainty uc(y) may be calculated numerically by replacing ciu(xi) in Equation (11a) 

with 

( ) ( ){ }1 1

1
, ..., , ..., , ..., , ...,

2
i i i N i i NZ f x x u x x f x x u x xª º ª º= + − −¬ ¼ ¬ ¼  

That is, ui(y) is evaluated numerically by calculating the change in y due to a change in xi of +u(xi) and of −u(xi). The value 

of ui(y) may then be taken as ŇZiŇ and the value of the corresponding sensitivity coefficient ci as Zi/u(xi). 

Sensitivity coefficients 

Absolute uncertainty 
NOT relative values 
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Uncertainty evaluation 

•  Method: 

1.  Describe the measurement: list all the 

influence quantities 

2.  Determine each quantity 

3.  Determine the uncertainty for each quantity 

4.  Calculate the combined uncertainty 

5.  Calculate the expanded uncertainty 
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Expanded uncertainty 

•  u(Xi) describes the uncertainty 

•  But we would like to say: the length is 12,5 m 

± 0,1 m with 95 % confidence 

 => Expanded uncertainty U 

 => Coverage factor k 

JCGM 100:2008 
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5.2.5 Correlations between input quantities cannot be ignored if present and significant. The associated 
covariances should be evaluated experimentally if feasible by varying the correlated input quantities (see 
C.3.6, Note 3), or by using the pool of available information on the correlated variability of the quantities in 
question (Type B evaluation of covariance). Insight based on experience and general knowledge (see 4.3.1 
and 4.3.2) is especially required when estimating the degree of correlation between input quantities arising 
from the effects of common influences, such as ambient temperature, barometric pressure, and humidity. 
Fortunately, in many cases, the effects of such influences have negligible interdependence and the affected 
input quantities can be assumed to be uncorrelated. However, if they cannot be assumed to be uncorrelated, 
the correlations themselves can be avoided if the common influences are introduced as additional 
independent input quantities as indicated in 5.2.4. 

6 Determining expanded uncertainty 

6.1 Introduction 

6.1.1 Recommendation INC-1 (1980) of the Working Group on the Statement of Uncertainties on which this 
Guide is based (see the Introduction), and Recommendations 1 (CI-1981) and 1 (CI-1986) of the CIPM 
approving and reaffirming INC-1 (1980) (see A.2 and A.3), advocate the use of the combined standard 
uncertainty uc(y) as the parameter for expressing quantitatively the uncertainty of the result of a measurement. 
Indeed, in the second of its recommendations, the CIPM has requested that what is now termed combined 
standard uncertainty uc(y) be used “by all participants in giving the results of all international comparisons or 
other work done under the auspices of the CIPM and Comités Consultatifs”. 

6.1.2 Although uc(y) can be universally used to express the uncertainty of a measurement result, in some 
commercial, industrial, and regulatory applications, and when health and safety are concerned, it is often 
necessary to give a measure of uncertainty that defines an interval about the measurement result that may be 
expected to encompass a large fraction of the distribution of values that could reasonably be attributed to the 
measurand. The existence of this requirement was recognized by the Working Group and led to paragraph 5 
of Recommendation INC-1 (1980). It is also reflected in Recommendation 1 (CI-1986) of the CIPM. 

6.2 Expanded uncertainty 

6.2.1 The additional measure of uncertainty that meets the requirement of providing an interval of the kind 
indicated in 6.1.2 is termed expanded uncertainty and is denoted by U. The expanded uncertainty U is 
obtained by multiplying the combined standard uncertainty uc(y) by a coverage factor k : 

( )cU ku y=  (18) 

The result of a measurement is then conveniently expressed as Y = y ± U, which is interpreted to mean that 
the best estimate of the value attributable to the measurand Y is y, and that y − U to y + U is an interval that 
may be expected to encompass a large fraction of the distribution of values that could reasonably be 
attributed to Y. Such an interval is also expressed as y − U u Y u y + U. 

6.2.2 The terms confidence interval (C.2.27, C.2.28) and confidence level (C.2.29) have specific 
definitions in statistics and are only applicable to the interval defined by U when certain conditions are met, 
including that all components of uncertainty that contribute to uc(y) be obtained from Type A evaluations. Thus, 
in this Guide, the word “confidence” is not used to modify the word “interval” when referring to the interval 
defined by U; and the term “confidence level” is not used in connection with that interval but rather the term 
“level of confidence”. More specifically, U is interpreted as defining an interval about the measurement result 
that encompasses a large fraction p of the probability distribution characterized by that result and its combined 
standard uncertainty, and p is the coverage probability or level of confidence of the interval. 

6.2.3 Whenever practicable, the level of confidence p associated with the interval defined by U should be 
estimated and stated. It should be recognized that multiplying uc(y) by a constant provides no new information 
but presents the previously available information in a different form. However, it should also be recognized 
that in most cases the level of confidence p (especially for values of p near 1) is rather uncertain, not only 
because of limited knowledge of the probability distribution characterized by y and uc(y) (particularly in the 
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Expanded uncertainty 

•  Assuming a few things (normal distributions…) 

 => For 95% confidence k = 2 

 => For 99% confidence k = 3 

JCGM 100:2008 
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5.2.5 Correlations between input quantities cannot be ignored if present and significant. The associated 
covariances should be evaluated experimentally if feasible by varying the correlated input quantities (see 
C.3.6, Note 3), or by using the pool of available information on the correlated variability of the quantities in 
question (Type B evaluation of covariance). Insight based on experience and general knowledge (see 4.3.1 
and 4.3.2) is especially required when estimating the degree of correlation between input quantities arising 
from the effects of common influences, such as ambient temperature, barometric pressure, and humidity. 
Fortunately, in many cases, the effects of such influences have negligible interdependence and the affected 
input quantities can be assumed to be uncorrelated. However, if they cannot be assumed to be uncorrelated, 
the correlations themselves can be avoided if the common influences are introduced as additional 
independent input quantities as indicated in 5.2.4. 

6 Determining expanded uncertainty 

6.1 Introduction 

6.1.1 Recommendation INC-1 (1980) of the Working Group on the Statement of Uncertainties on which this 
Guide is based (see the Introduction), and Recommendations 1 (CI-1981) and 1 (CI-1986) of the CIPM 
approving and reaffirming INC-1 (1980) (see A.2 and A.3), advocate the use of the combined standard 
uncertainty uc(y) as the parameter for expressing quantitatively the uncertainty of the result of a measurement. 
Indeed, in the second of its recommendations, the CIPM has requested that what is now termed combined 
standard uncertainty uc(y) be used “by all participants in giving the results of all international comparisons or 
other work done under the auspices of the CIPM and Comités Consultatifs”. 

6.1.2 Although uc(y) can be universally used to express the uncertainty of a measurement result, in some 
commercial, industrial, and regulatory applications, and when health and safety are concerned, it is often 
necessary to give a measure of uncertainty that defines an interval about the measurement result that may be 
expected to encompass a large fraction of the distribution of values that could reasonably be attributed to the 
measurand. The existence of this requirement was recognized by the Working Group and led to paragraph 5 
of Recommendation INC-1 (1980). It is also reflected in Recommendation 1 (CI-1986) of the CIPM. 

6.2 Expanded uncertainty 

6.2.1 The additional measure of uncertainty that meets the requirement of providing an interval of the kind 
indicated in 6.1.2 is termed expanded uncertainty and is denoted by U. The expanded uncertainty U is 
obtained by multiplying the combined standard uncertainty uc(y) by a coverage factor k : 

( )cU ku y=  (18) 

The result of a measurement is then conveniently expressed as Y = y ± U, which is interpreted to mean that 
the best estimate of the value attributable to the measurand Y is y, and that y − U to y + U is an interval that 
may be expected to encompass a large fraction of the distribution of values that could reasonably be 
attributed to Y. Such an interval is also expressed as y − U u Y u y + U. 

6.2.2 The terms confidence interval (C.2.27, C.2.28) and confidence level (C.2.29) have specific 
definitions in statistics and are only applicable to the interval defined by U when certain conditions are met, 
including that all components of uncertainty that contribute to uc(y) be obtained from Type A evaluations. Thus, 
in this Guide, the word “confidence” is not used to modify the word “interval” when referring to the interval 
defined by U; and the term “confidence level” is not used in connection with that interval but rather the term 
“level of confidence”. More specifically, U is interpreted as defining an interval about the measurement result 
that encompasses a large fraction p of the probability distribution characterized by that result and its combined 
standard uncertainty, and p is the coverage probability or level of confidence of the interval. 

6.2.3 Whenever practicable, the level of confidence p associated with the interval defined by U should be 
estimated and stated. It should be recognized that multiplying uc(y) by a constant provides no new information 
but presents the previously available information in a different form. However, it should also be recognized 
that in most cases the level of confidence p (especially for values of p near 1) is rather uncertain, not only 
because of limited knowledge of the probability distribution characterized by y and uc(y) (particularly in the 
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Assumptions 

•  Normal distributions 

•  Large number of observations 

•  No correlations between quantities 



Measurement	
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Instrument properties 
•  Measurement range 
•  Linearity — accuracy of response within range 
•  Stability — short and long term drift 
•  Response time 
•  Accuracy 
•  Precision 
•  Hysteresis 
•  Quantization — signal and sampling rate 
•  Cost — money, time, complexity 
•  … 
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Measurement range 

•  How wide is the possible measurement 
range? 

•  Examples: 
– Size of a ruler 
– Starting and destruction speed of an 

anemometer 
– Freezing and boiling points of a thermometer 
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Linearity 

•  How many corrections to apply along the 
measuring range? 
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Stability 

•  How much drift of the measurement 
evaluation: 
– short term  
–  long term 

– Example for a temperature measurement by 
thermocouple: 

•  Short term drift: thermal sensitivity of the ADC 
•  Long term drift: chemical alteration of the TC 
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Repeatibility and Reproducibility 

Repeatability 
Variability on an occasion 
With-in run precision 
 
Reproducibility 
Variability on different occasions 
Between-run precision 
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Response time 

•  How fast the output signal changes? 

Thermocouples: Speed vs Diameter 
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Accuracy and Precision 

Accuracy (Justesse) 
The closeness of the experimental mean value 
to the true value. 
High accuracy = Small systematic error. 
 
Precision (Fidélité) 
The degree of scatter in the results. 
High precision = Small random error. 
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Accuracy and Precision On admet que les variations de l’erreur systématique autour de la correction effectuée sont aléatoires, 

ce qui permet de supposer que l’erreur systématique H suit une loi de probabilité bien définie. 

On peut illustrer ces notions d’erreurs systématique et aléatoire par le tir dans une cible : 
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juste, mais pas fidèle       fidèle, mais pas juste  
(valeurs centrées mais dispersées)         (valeurs décentrées mais resserrées) 

  erreurs aléatoires        erreurs systématiques 
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   ni juste, ni fidèle    fidèle et juste 
 erreurs aléatoires et systématiques   erreurs faibles 

Ce dessin n’est cependant qu’une vue théorique trompeuse, car en général, on ne connaît pas la cible, 
la dispersion nous renseigne sur les erreurs aléatoires, mais la présence d’erreur systématique est 
souvent difficile à déceler. 

c) Modélisation du mesurage 

On suppose que le résultat d’un mesurage a été corrigé pour tous les effets systématiques reconnus 
comme significatifs et qu’on a fait tous les efforts pour leur identification. On dit alors que la méthode 
de mesure est correcte. 

On peut donc modéliser le mesurage par : Y = y0 + H  +  ' 

Si on imagine pouvoir faire une infinité de mesures (ce qui revient à considérer la distribution de 

toutes les mesures), l’erreur systématique H  sur un mesurage est le décalage entre la « valeur vraie » 
du mesurande et la moyenne (théorique) de l’infinité de toutes les mesures qui pourraient être 
effectuées. 

C’est la « moyenne qui résulterait d’un nombre infini de mesurages du même mesurande, effectués 
dans des conditions de répétabilité, moins une valeur vraie du mesurande. » (VIM 93 ou GUM 08)  

Comme on le verra plus loin (ce résultat est justifié en annexe), la moyenne est en général la meilleure 
estimation de la grandeur mesurée, et l’erreur aléatoire ' sur un mesurage représente la différence 
entre cette moyenne et les résultats obtenus. C’est le « résultat d’un mesurage moins la moyenne d’un 
nombre infini de mesurages du même mesurande, effectués dans des conditions de répétabilité. » 
(VIM 93)  
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ACCURATE PRECISE 

ACCURATE and PRECISE whatever… 
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Hysteresis 

•  Does the output depends on past 
environment? 

 
Ex: Meniscus 

Hysteresis & Linearity
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Quantization 

•  Quantity of steps between the analog 
signal and the numeric value: 
– Signal output 
– Sampling rate 

Eg: 16 bits = 65536 values 
for the Full Scale of the 

converter 

Eg: 1 ksps = 1000 values per seconds 
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Instrument properties 

•  Measurement 
range 

•  Linearity  
•  Hysteresis 
•  Stability 
•  Response time 
•  Quantization 

•  Accuracy 
•  Precision 
•  Repeatability 
•  Reproductibility 
•  Cost €€€-time 
•  … 

On admet que les variations de l’erreur systématique autour de la correction effectuée sont aléatoires, 

ce qui permet de supposer que l’erreur systématique H suit une loi de probabilité bien définie. 
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Hysteresis & Linearity
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Choice of the instrument 

Width of a rectangle 

width 
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Instrument properties 
There are no perfect sensor which has the perfect 
properties for all the measurements needs. 
 
⇒ Need to adapt the technology and setup of the 

sensor to the actual requirement of measurement 
performance: “the size of the uncertainty” 

⇒ In order to save time and €€€ 
⇒ In order to be realistic with the environment 
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Instrument properties 

There are no perfect sensor which has the 
perfect properties for all the measurements 
needs. 
 
⇒ A wished performance may be 

unreachable with the provided resources 
and the current state of the art of the 
Metrology 

⇒ Eg: measuring the irradiated surface temperature of a tower solar 
receiver at ±1 K @ 95% uncertainty: next to impossible in real 
field, at least for now… no ? 
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Measuring 
is 

Comparing 
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The Truth 
is 

Out there 
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 CRC Press 
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ISBN13: 978-084-931-0812 
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Reference books about 
measurement techniques 
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