Measuring Optical and Thermal Properties of High Temperature Receivers

Johannes Pernpeintner, Thomas Fend

4th SFERA Summerschool, May 15-16, 2013, Burg Hornberg
Part I:

Thermal properties of receivers for

SOLAR TOWER TECHNOLOGY

→ Thomas Fend

Part II:

Optical and thermal properties of tube receivers for

PARABOLIC TROUGH TECHNOLOGY

→ Johannes Pernpeitner
Why Solar Tower Technology?

- Efficiency limited by thermal engine
- Higher temperatures – higher efficiencies
- Higher losses at higher temperatures
- Higher concentration ratio
Solar Tower Technology: Example
Receivers for Solar Tower Technology

- volumetric receivers
- tube receivers
- direct medium receivers
- ...
Tube Receivers

- absorption on outer tube surface
- transport of heat through tube wall to a medium
- **media:** liquid salt, liquid metal, water, air

 - thermal resistance
 - non homogeneous heating
 - tube surface temperature is higher than medium temperature
Tube Receivers

- absorption on outer tube surface
- transport of heat through tube wall to a medium
- **media**: liquid salt, liquid metal, water, air

 - thermal resistance
 - non homogeneous heating
 - tube surface temperature is higher than medium temperature
Tube Receivers

- absorption on outer tube surface
- transport of heat through tube wall to a medium
- **media**: liquid salt, liquid metal, water, air

 - thermal resistance
 - non homogeneous heating
 - tube surface temperature is higher than medium temperature
Tube Receivers

- absorption on outer tube surface
- transport of heat through tube wall to a medium
- **media**: liquid salt, liquid metal, water, air

 - thermal resistance
 - non homogeneous heating
 - tube surface temperature is higher than medium temperature

Source: desertec UK
Volumetric Receivers

- Radiation absorbed in the porous volume of the receiver
- Front temperature lower than medium temperature

- **Medium**: air, pressurized air
Volumetric Receivers

- Radiation absorbed in the porous volume of the receiver
- Front temperature lower than medium temperature
- **Medium**: air, pressurized air
Volumetric Receivers

- Radiation absorbed in the porous volume of the receiver
- Front temperature lower than medium temperature

Medium: air, pressurized air

Solar Tower Jülich

- Tower: 60m
- 2153 Heliostats (8.2 m²)
- 22.7 m² receiver aperture
- 1 h thermal storage
- 500°C/ 30 bar
- 1.5 MWₐₑ turbine
Thermal Performance Prediction
Thermal Performance Prediction

- Absorption
Thermal Performance Prediction

- Absorption
- Conductive resistance in tube wall
Thermal Performance Prediction

- Absorption
- Conductive resistance in tube wall
- Convective resistance
Thermal Performance Prediction

- Absorption
- Conductive resistance in tube wall
- Convective resistance

→ tables
→ standard techniques
→ optimization of process by geometry and thermal properties of the employed material
Thermal Performance Prediction: Heat Transfer Enhancing Concepts

- Increased heat transfer surface
- Enhanced heat transfer by gradation in radial direction
- Thermal properties of porous material needed
- Proposed in Korean/Swiss/German project \textit{CMC4CSP}
Thermal Performance Prediction: Volumetric Receiver

- Conductive resistance and
- Convective resistance in porous volume

→ Advanced experimental techniques necessary if non-uniform pore geometries are used
Thermal Performance Prediction

- Conductive resistance and
- Convective resistance in porous volume

→ Advanced experimental techniques necessary if non-uniform pore geometries are used
Thermal Performance Prediction

- Conductive resistance and
- Convective resistance in *porous* volume

→ Advanced experimental techniques necessary if non-uniform pore geometries are used
Thermal Conductivity of Porous Materials

- Transient Plane Source Technique
 - Measurement of characteristic volumes
 - Measurement yields
 - effective thermal conductivity
 - effective thermal diffusivity
 - heat capacity
Thermal Conductivity of Porous Materials

- Transient Plane Source Technique
 + Measurement of characteristic volumes
 + Measurement yields
 - effective thermal conductivity
 - effective thermal diffusivity
 - heat capacity
Effective Thermal Conductivity of Porous Materials: Metal Foams

Nickel base alloy

Thermal Conductivity (W/mK)

Temperature (°C)

model solid conductive
model conuctive + radiation
experimental data 2140
Convective Resistance in Porous Volume

- two phase approach in continuum model
- Additional term in energy equations of solid and fluid phase

\[\lambda_{\text{eff}} \nabla^2 T_S - \alpha A_v (T_S - T_F) = 0 \]

\[\dot{m} C_P \frac{dT_F}{dx} - \alpha A_v (T_S - T_F) = 0 \]

\(\alpha A_v \): volumetric convective heat transfer coefficient
Experimental Set-Up for Volumetric Convective Heat Transfer Coefficient

α_{Av}: AAF-method

- Air flow with alternating temperature profile induced
- Porous sample causes phase shift and amplitude attenuation
- α_{Av} determined

1) Alternating Air flow method after Younis and Viskanta
Experimental Set-Up for Volumetric Convective Heat Transfer Coefficient

$\alpha_{Av}: AAF\text{-method}$
Experimental Set-Up for Volumetric Convective Heat Transfer Coefficient

\(\alpha_Av: AAF\text{-}method \)
Experimental Set-Up for Volumetric Convective Heat Transfer Coefficient

\(\alpha_{Av}: AAF\text{-}method \)

\[\text{Nu} = 4.8 \cdot n_{PPI}^{-1.1} \cdot \text{Re}^{0.62} \]
Experimental Set-Up for Volumetric Convective Heat Transfer Coefficient

\(\alpha_{Av}: \text{AlAv-method}^{1} \)

1) AlphaAv-method after Brendelberger et al.
Experimental Set-Up for Volumetric Convective Heat Transfer Coefficient

$\alpha_{Av}: AlAv\text{-}method$
The AlAv-method: Results on Metal Foams
Conclusions

• For the prediction of the thermal performance of high temperature components characteristic quantities are needed
• Transient plane Source Technique for thermal conductivity measurement
• AAF and AlAV method for volumetric convective heat transfer properties