Sunshape analysis and atmospheric influences

Stefan Wilbert, DLR Norbert Geuder, CSP Services

Overview

- Introduction and motivation
- Definitions
 - circumsolar radiation, sunshape
 - angular acceptance
 - optical performance
- Options to include the sunshape in CST efficiency calculation
- Exemplary results
- Sunshape measurements before Sfera project
- Currently used measurement systems for circumsolar radiation
 - reference measurement system
 - Black Photon Instruments System
 - RSI based system
- Modeled CSR using ground measurements
- CSR from satellite data

Motivation

- Angular sensitivity of different CSP technologies and irradiation sensors do not coincide ...
- ... nor is the luminosity of the sun and its environmental region always equal.

Circumsolar radiation

sunshapes

The sunshape varies strongly with time and climate: \rightarrow Information required for CSP plants

Acceptance function

- Angular Acceptance Function (α)

"number" of all rays (α)

Response of pyrheliometer

- parallel rays incident on the aperture at an angle $\boldsymbol{\alpha}$
- Response of pyrheliometer given by
 - Angular Acceptance Function (α)
 - "number" of rays (α) which reach the sensor

"number" of all rays (α)

Angular Acceptance Functions

Definition: Intercept factor

•The intercept factor

•is defined as the fraction of the rays incident on the aperture that are intercepted by the receiver

intercept factor = # accepted rays / # incident rays

intercept factor refers to the question whether or not the rays hit the absorber
Is proportional to the total optical efficiency of a concentrating collector

Options to include the sunshape in CST efficiency calculations

Option 1: Optical efficiency from experimental data

- Optical efficiency measured with test collectors
- Measurement series must include dependency on position of the sun relative to the collector
 - Reflectivity, transmittance, absorption & intercept factor change
 - → e.g. parabolic trough: use Incident Angle Modifier (IAM) to describe dependency

$$\eta_{opt}(\varphi) = \eta_{opt,0^{\circ}} \cdot IAM(\varphi)$$

 $\eta_{opt,0}$ optical efficiency (sun in zenith) IAM Incidence Angle Modifier φ incidence angle

Experiments only performed for clear days

- \Rightarrow only valid for the sunshapes that were present during the measurement
- ⇒ efficiency should be changed for performance modeling corresponding to sunshape time series (usually not done)

Option 2: Optical performance from raytracing

Principle:

- Real geometry of collector and receiver known (not just design geometry)
- Reflectivity, transmittance (air, entrance windows), absorptivity known
- Sunshape assumed
- Follow light rays on their way from the sun to the receiver using physics (basically law of reflection)

Usually performed only for constant "standard sunshape"

Option 3: Rabl/Bendt's analytical model to describe the optical performance

- Analytical \rightarrow fast
 - Performance prediction
- Concept:
 - Assume that the errors (mirror shape, tracking, etc.) just broaden the light source (sunshape) which is then focused on an absorber by a perfect collector.
 - \rightarrow model for a perfect collector needed (Angular Acceptance Function)
 - → model for the calculation of the broadened light source needed (Effective Source, convolve sunshape with Gaussian distributions representing the errors of the collector)
- Works for troughs and dishes
 - Similar concepts for towers (HFLCAL) and Fresnel collectors exist
 - More complicated and mathematically cumbersome because of shading and blocking
- Usually only used with constant "standard sunshape"

Tools for evaluation of impact on CSP – Rabl/Bendt & SPRAY

Sunshape measurements

Sunshape-Measurements before Sfera (2009)

- ~1750: only disk
- end of 19th century: only aureole
- Pyrheliometers with different apertures
 - e.g. University Houston 1975
- 1970s: Lawrence Berkeley Laboratory
 - scanning telescope, small aperture
- 1990s: PSI & DLR:
 - Sunshape camera (CCD)

Typical sunshapes for USA and Europe have been derived, **but**:

- No data was available for regions that are now interesting for CSP
- Validation of sunshapes from radiative transfer models was not possible
 - requires new measurements with parallel additional measurements of the atmospheric conditions (clouds & aerosols)

SFERA - Sunshape Measurement System

- SAM (Sun & Aureole Measurement), sun photometer & software
 - broadband and spectral sunshape
 - autonomous measurements
 - additional determination of aerosol & cloud properties
 - instruments part of Aeronet & SAMnet (Visidyne)
 - data openly available on the internet
- master-system running at PSA
 - 2 replicas: CNRS/Odeillo, Masdar Institute

SFERA - Sunshape Measurement System

SAM (Sun & Aureole Measurement)

- narrow bandpass filter (670nm) necessary for

measurement of cloud properties

- data gap between information from 2 cameras

Post processing software

- gap fitting
- spectral correction

- get broadband & spectral sunshapes

Sun photometer

- measurement of spectral DNI
 - 9 different wavelengths
- measurement of spectral sky radiance

ightarrow information on aerosols & solar spectrum

(using Gueymard's SMARTS software)

Wilbert et al. 2011 & 2013

Alternative measurement methods

- Depending on application less expensive and less maintenance intensive method required
 - 2 pyrheliometers with different fields of view
 - Rotating Shadowband Irradiometer, RSI

Wilbert et al. 2012 & 2013b

The Black Photon CSR 460 Sensor

Results Step 1: Relative deviation of (1-2)/1

CSR determination - Principle

Buie's sunshape model: Standard sunshapes derived from measurements by Lawrence Berkeley Laboratories in 1970/80s at 11 locations in the

Calculation of look-up table

BPI CSR sensor – results (relative dev. translated in to CSR for standard sunshapes (Buie))

Comparison of Long Term CSR Measurements

- Dataset: April 23rd 2012 –

June 30th 2012

Comparison of Buie's Sunshape Model to Measured Sunshapes

Future Development for pyrheliometer method

-Add 3rd detector to determine steepness of CSR sunhape -more sophisticated sunshape model (CSR + AM + cloud presence from DNI => sunshape with correct slope)

BPI Sensor: Summary & Conclusion

- New System BPI CSR 460 has been developed
- Accurate measurement of circumsolar irradiance in specific angular region
- Difference between Sensor 1 and 2 can be used to calculate CSR using Buie's sunshape model.
- Model allows for good CSR results for many days, but bias towards overestimation of CSR.
- Overestimation is result of Buie's standard sunshape being steeper than average measured CSR sunshape in Tabernas, Spain May-June 2012.
- 3rd sensor will be used in the future for higher accuracy of CSR determination

CSR from RSI – burst analysis

Simulation results – Information on CSR from the Burst

- Shoulders vary with CSR => they contain information on CSR
- 4 parameters used to find blocked circumsolar & blocked further sky irradiance starting at the steep parts of the burst
- Blocked circumsolar irradiance is proportional to total circumsolar irradiance
- Find 4 parameters by searching min of R²(CSR(RSI) vs. CSR(ref, SAM))
- Find linear equation for this parameter set for CSR(RSI) vs. CSR(ref, SAM)

CSR from RSI: validation with reference

Available Sunshape Measurement data (status 05/2013)

- LBL reduced data base (200.000 measurements, 11 sites, USA)
- DLR measurements PSA, Cologne, Odeillo (only CSR saved, 1990s)
- New reference-system
 - at PSA: >2 years
 - CNRS replica set up: some months
 - Masdar Institute replica: ~1 year
- RSI @ PSA: 3 years

Alternative method to determine CSR

Modeled CSR pt. 1 – ground based

Required:

- **DNI measurement** (recommended 1min pyrheliometer)
- Aerosol information (recommended: Aeronet data)
- SMARTS

Derivation method:

- 1. Calculate clear sky CSR and DNI with SMARTS
- 2. Compare clear sky DNI with measured DNI Output: cloud transmittance
- 3. Use cloud transmittance to determine the effect of the clouds on the CSR Based on sunshape measurements and Aeronet data (e.g. from PSA)

Modeled CSR based on ground measurements

Sunshape derived from satellite data

Satellite based retrieval of Sunshape

- Step 1:
 - Simulate sunshape for different atmospheric conditions
 - 3D simulation by MYSTIC model

Satellite based retrieval of Sunshape

- Step 2:
 - Use satellite based retrievals of cloud & aerosol properties
 - Parameterization of sunshape in terms of cloud & aerosol properties allows fast conversion to circumsolar radiation

Ongoing work

- Validation of satellite based retrievals of CSR

Outlook

- More ground based sunshape measurements
 - More replicas of the SFERA measurement system
 - Use CSR algortihm with RSI stations
 - Two or better 3 pyrheliometer setup (Black Photon Instruments)
- Continued analysis and studies on sunshape impact
- Implementation of sunshape in plant performance calculation models
- Validation and further developement of satellite based sunshape determination and modelled CSR

- Thanks to Norbert Geuder for presenting the topic!
- Thanks to Bernhard Reinhardt for providing the slides on satellite based retrieval of the CSR!

References

- Wilbert, S., Pitz-Paal, R., and Müller, S., "Rotating Shadowband Irradiometers and Circumsolar Radiation," 2012 COST WIRE Workshop Payerne
- Wilbert, S., Pitz-Paal, R., Jaus, J., (2012). Circumsolar Radiation and Beam Irradiance Measurements for Focusing Collectors. ES1002: COST WIRE Workshop May 22nd-23rd 2012, Risö.
- CNRS/DLR; SFERA Project report R13.2: Guideline for replication and installation of the developed sunshape device, 2012, available online http://sfera.sollab.eu/downloads/JRA/WP <u>13/R13.2_SFERA_WP13T1.pdf</u> (visited 16.11.2012)
- Wolfertstetter, F.; Pottler, K.; Alami Merrouni, A.; Mezrhab, A.; Pitz-Paal, R.; A Novel method for Automatic Real-Time Monitoring of Mirror Soiling Rates; SolarPACES 2012 11.-15.09.2012, Marrakech, Morocco, also presented at the 3rd Dii Desertec Energy Conference, 7.-9.1. 2912, Berlin Germany
- Hanrieder, N.; Wehringer, F.; Wilbert, S.; Wolfertstetter, F.; Pitz-Paal, R.; Campos, A.; Quaschning, V.; Determination of Beam Attenuation in Tower Plants; SolarPACES 2012 11.-15.09.2012, Marrakech, Morocco
- Bernhard Reinhardt et al., SFERA Project report "Determination of the Sunshape from Meteosat Second Generation", available online, <u>http://sfera.sollab.eu/downloads/JRA/WP13/R13.4_SFERA_WP13_T1e_Sunsh_Satellite_report_final.pdf</u> (last visited 23/1/13)
- Jeys, T. H., and Vant-Hull, L. L., 1976, "The contribution of the solar aureole to the measurements of pyrheliometers," Solar Energy, 18(4), pp. 343-348.
- Buie, D., 2006, "Optical considerations in solar concentrating systems," University of Sydney. Physics.
- Neumann, A., and Von Der Au, B., 1997, "Sunshape Measurements at the DLR Solar Furnace Site in Cologne, Germany," SOLAR ENGINEERING, pp. 163-170.
- Belhomme, B., Pitz-Paal, R., Schwarzbözl, P., and Ulmer, S., 2009, "A New Fast Ray Tracing Tool for High-Precision Simulation of Heliostat Fields," Journal of Solar Energy Engineering, 131, p. 031002.
- Buras, R., and Mayer, B., 2011, "Efficient unbiased variance reduction techniques for Monte Carlo simulations of radiative transfer in cloudy atmospheres: The solution," Journal of Quantitative Spectroscopy and Radiative Transfer, 112(3), pp. 434-447.
- Wilbert, S., R. Pitz-Paal, et al. (2013). Comparison of Measurement Techniques for the Determination of Circumsolar Irradiance. 9th International Conference on Concentrator Photovoltaic Systems (CPV-9), April 15-18, 2013. Miyasaki, Japan.
- Wilbert, S., Reinhardt, B., DeVore, J., Röger, M., Pitz-Paal, R., Gueymard, C., Buras, R. (2013). "MEASUREMENT OF SOLAR RADIANCE PROFILES WITH THE SUN AND AUREOLE MEASUREMENT SYSTEM (SAM)." Journal of Solar Energy Engineering (in print).

Definition: Optical efficiency of a concentrating collector

$$\eta_{opt} = \rho \cdot \tau \cdot \alpha \cdot IC$$

η_{opt} opt. efficiency

includes the effects until radiation is absorbed by the receiver

- ρ reflectivity, mirrors
- *τ* transmittance, entrance window of receiver (+air between mirror and receiver)
- α absorption, receiver
- IC intercept-factor

BPI CSR sensor – two pyrheliometers

BPI CSR sensor – two pyrheliometers

- Relative deviation of DNI measurement with respect to instrument with widest slope angle caused by circumsolar radiation vs. CSR
- → standard sunshapes from Buie's model for given CSR [Buie 2003]

Satellite based retrieval of Sunshape

- Result: CSR maps, time series, long time averages

