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Introduction Influence of Radiation

Influence of Radiation

1 In solar receptors-reactors, heat and mass transfer modes are
coupled.

HEAT TRANSFER

REACTION
CHEMICAL

COUPLINGgas mixture conducion
convection
radiation

homogeneous
heterogeneous

gas−solid

FLOW DYNAMICS

Cyril Caliot (PROMES-CNRS Lab.) Numerical Methods in Radiative Transfer 11 june 2010 4 / 38



Introduction Influence of Radiation

Influence of Radiation

1 In solar receptors-reactors, heat and mass transfer modes are
coupled.

2 At high temperature the heat transfer byradiation becomes
predominant.

Cyril Caliot (PROMES-CNRS Lab.) Numerical Methods in Radiative Transfer 11 june 2010 4 / 38



Introduction Influence of Radiation

Influence of Radiation

1 In solar receptors-reactors, heat and mass transfer modes are
coupled.

2 At high temperature the heat transfer byradiation becomes
predominant.

3 To predict the influence of radiation one needsa model for
radiative heat transfer

to compute theradiative fluxeson the walls
and theradiative source termsin a participative medium (emits,
absorbs or scatters radiation)
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Introduction Dependencies of Radiation

Dependencies of Radiation

Radiative transfer models
have to deal with

theangular (or
directional)
dependency
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Introduction Dependencies of Radiation

Dependencies of Radiation

Radiative transfer models
have to deal with

theangular (or
directional)
dependency

thespectral
dependency

Cyril Caliot (PROMES-CNRS Lab.) Numerical Methods in Radiative Transfer 11 june 2010 5 / 38



Introduction Radiative Transfer Equation

Radiative Transfer Equation

~si ·
−→
∇ Iν(~r,~si) = − βνIν(~r,~si)+κaνIbν(T(~r))

+ κsν

Z

4π
Iν(~r,~sj)Pν(~r,~sj →~si)dΩj

Z

4π
Pν(~si ,~s)dΩi ≡ 1

κaν =
1

laν
; κsν =

1
lsν

βν = κsν +κaν =
1
lν

ων =
κsν
βν

=
lν
lsν

= 1− κaν
βν
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Introduction Radiative Transfer Equation

Radiative Transfer Equation

~si ·
−→
∇ Iν(~r,~si) =

dIν(~r,~si)

ds
= µi

∂Iν(~r,~si)

∂x
+ηi

∂Iν(~r,~si)

∂y
+ξi

∂Iν(~r,~si)

∂z

~si = (~si ·~i)~i +(~si ·~j)~j +(~si ·~k)~k
= µi~i +ηi~j +ξi~k

i

Z

Y

X

j

Z

Y

X

µ i

η i

ξ
i si

k

dΩ

si
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Introduction Irradiation and Radiative Flux

Irradiation and Radiative Flux

The monochromatic incident radiation

Gν(~r) =
Z 4π

0
Iν(~r,~s)dΩ

The monochromatic radiative flux vector

~qrν(~r,~s) =

Z 4π

0
Iν(~r,~s)~sdΩ

The total radiative flux at a surface

qr,n(~r,~s) =~qrν(~r,~s) ·~n =

Z ∞

0
dν

Z 4π

0
Iν(~r,~s)

(

~s·~n
)

dΩ
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Introduction Balance Equations

Balance Equations

∂ρ
∂t

+
−→
∇ · (ρ~v) = 0

∂(ρ~v)
∂t

+
−→
∇ · (ρ~v⊗~v) = −−→

∇ p+
−→
∇ ·

−→−→τ + ρ~f

∂(ρe)
∂t

+
−→
∇ · [ (ρe+p)~v ] =

−→
∇ ·

(−→−→τ ·~v
)

+ ρ~f ·~v− −→
∇ ·~q
︸︷︷︸

Flux Divergence

+R

−→
∇ ·~q =

−→
∇ · ( ~qc

︸︷︷︸

Conductive

+ ~qr
︸︷︷︸

Radiative

)

−→
∇ ·~qc =

−→
∇ · (−λ

−→
∇ T)

−→
∇ ·~qr = −

Z ∞

0
κaν(

Z

4π
dΩ Iν −4πIbν) dν

= −
Z ∞

0
κaν(Gν −4πIbν) dν
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Introduction List of Numerical Methods

Numerical Methods

Numerous methods are used in radiative transfer

Spherical Harmonics Approximation : PN

Discrete Ordinates Method : DOM

Finite Volume Method : FVM

Zonal Method : ZM

Monte Carlo Method : MCM

and others ...
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Discrete Ordinates Method Angular Quadratures

Angular Quadratures

The integrals over the directions are replaced by numerical
quadratures :

Z

4π
f dΩ =

M

∑
j=1

∆Ωj f (~sj)

~sj are the quadrature points (the discrete ordinates)
∆Ωj (= wj) are the quadrature weights (solid angle increments)

Gν(~r) =
M

∑
j=1

∆Ωj Iν(~r,~sj)

~qr(~r,~s) =
Z ∞

0
dν

M

∑
j=1

∆Ωj Iν(~r,~sj)~s

(2)
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Discrete Ordinates Method Angular Quadratures

Angular Quadratures

In the radiative transfer equation, the integral over the solid angle is
approximated by division into increments.

~si ·
−→
∇ Iν(~r,~si) =−βνIν(~r,~si)+κaνIbν(T(~r))

+κsν

M

∑
j=1

∆ΩjIν(~r,~sj)Pν(~r,~sj →~si)

The boundary condition (diffuse gray wall) becomes :

Iν(~rw,~si) = εν,wIbν(T(~rw))+
ρν,w

π ∑
~nw·~sj<0

∆Ωj Iν(~rw,~sj)|~nw ·~sj|
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Discrete Ordinates Method Angular Quadratures

Symmetric Quadrature Sets

To guarantee a solution invariance for any rotation of90o around
any coordinate axis the quadrature should have

1 symmetric weightsand
2 symmetric ordinates.

Description of the directions in one octantsufficies to describe the
directions in all octants.
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Discrete Ordinates Method Angular Quadratures

Angular Quadratures Sets

Many quadrature sets were
developped :

the level-symmetric S-N
quad. (S4)
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Discrete Ordinates Method Angular Quadratures

Angular Quadratures Sets

Many quadrature sets were
developped :

the level-symmetric S-N
quad. (S4)

theT-N quad. (T2)

thepolar/azimuthal
angular quad.
(Nθ = 2;Nφ = 2)
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Discrete Ordinates Method Discretization

Discretization

To show how the DOM works we will consider
1 a2D domain with 2D volume elements and
2 acell-centereddiscretization.

To solve the RTE, thefinite volume method will be used.
Y

X

si
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Discrete Ordinates Method Discretization

Discretized RTE

The RTE is integrated over a control volumeVc, the LHS of RTE gives

Z

Vc

~si ·
−→
∇ Iν(~r,~si)dV =

Z

Vc

−→
∇ ·

(

~si Iν(~r,~si)

)

dV =
Z

A
Iν(~rA,~si) (~si ·~n)dA

while the RHS gives

Z

Vc

(

−βνIν(~r,~si)+Sν(~rp,~si)

)

dV = Vc

(

−βνIν(~r,~si)+Sν(~rp,~si)

)

with changes in the notation, the RTE becomes

Nf

∑
k=1

I i
k (~si ·~nk)Ak = Vc

(

−βI i
p +Si

p

)
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Discrete Ordinates Method Discretization

Closure Scheme

wn ne

nn

ns

Y

X

si

Nf

∑
k=1

I i
k (~si ·~nk)Ak = Vc

(

−βI i
p +Si

p

)

µi(AeI
i
e−AwI i

w)+ηi(AnI i
n−AsI

i
s) = Vp(S

i
p−βI i

p)

Need of a closure scheme such as thestep, diamond, CLAM etc..
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Discrete Ordinates Method Discretization

Spatial Discretization

The evolution of the intensity insideVc is given by

I i
p = (1− γ)I i

w + γI i
e

= (1− γ)I i
s+ γI i

n

For the step modelγ = 1 and for the diamond schemeγ = 0.5.

Diamond−difference (linear model)Step model

Iip Iip

Iiin Iiout

Iiout

Iiin

I i
e =

1
γ
(I i

p− (1− γ)I i
w)

I i
n =

1
γ
(I i

p− (1− γ)I i
s)
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Discrete Ordinates Method Discretization

µi(AeI
i
e−AwI i

w)+ηi(AnI i
n−AsI

i
s) = Vp(S

i
p−βI i

p)

AeI
i
e−AwI i

w =
1
γ

(

AeI
i
p− I i

w(Ae(1− γ)+ γAw)

)

AnI i
n−AsI

i
s =

1
γ

(

AnI i
p− I i

s(An(1− γ)+ γAs)

)

I i
p =

µiAewI i
w +ηiAnsI i

s+ γSi
pVp

µiAe+ηiAn+ γβVp

Aew = (1− γ)Ae+ γAw

Ans = (1− γ)An+ γAs

Si
p = κaIb(Tp)+κs

M

∑
j=1

∆ΩjI
j
pPji

p
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Discrete Ordinates Method Solution Procedure

Convergence Method

Geometrical informations andT, P, X fields are given.
1 Choose a discrete ordinate~si

2 ComputeI i
p (in each cell)

3 Progess by a point-by-point iteration in the~si direction

Y
X

si
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Finite Volume Method
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Finite Volume Method Domain Discretization

Domain Discretization

For a monochromatic RTE the space and angular variables are
independent. In the FVM,

1 thespaceis subdivided intocontrol volumes(CV).
2 thesolid angle4π is divided intoM control angles(CA).

The directional intensity at nodep, Iνp(~si)

is obtained byintegrating the RTE over a FV and a CA.
is assumedconstantover the FV and CA.

Y

X

si

(a) Control volume

i

(b) Control angle

Cyril Caliot (PROMES-CNRS Lab.) Numerical Methods in Radiative Transfer 11 june 2010 23 / 38



Finite Volume Method RTE Discretization

RTE Discretization

Integration of the LHS of the RTE (Green-Ostrogradski) gives
Z

∆Ωi

Z

Vc

~si ·
−→
∇ Iν(~r,~si)dVdΩi =

Z

∆Ωi

Z

A
Iν(~rA,~si) (~si ·~n)dA dΩi

while the RHS gives
Z

∆Ωi

Z

Vc

(

−βνIν(~r,~si)+Sν(~r,~si)

)

dV dΩi =

(

−βνIν +Sν

)

Vc ∆Ωi

Discretized RTE
Nnb

∑
k=1

I i
nbAnb

Z

∆Ωi
(~si ·~nnb)dΩi =

(

−βI i
p +Si

p

)

Vc ∆Ωi

Si
p = κaIb(Tp)+κs

M

∑
j=1

I j
p P

ji
p ∆Ωj
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Finite Volume Method RTE Discretization

RTE Discretization

Nnb

∑
k=1

I i
nbAnb

Z

∆Ωi
(~si ·~nnb)dΩi =

(

−βI i
p +Si

p

)

Vc ∆Ωi

To solve the RTE a closure scheme such as theupwind (step),
diamond, CLAM or exponentialscheme (etc.) can be used.
Then, the RTE can be written as

ai
pI i

p = ∑
nb

ai
nbI

i
nb+bi

If the upwindscheme is used the coefficients are

ai
p = ∑

nb

max

(

AnbD
i
nb,0

)

+βVc∆Ωi ; Di
nb =

Z

∆Ωi
(~si ·~nnb)dΩi

ai
nb = max

(

−AnbD
i
nb,0

)

; bi = Si
pVc∆Ωi
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DOM and FVM defects
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DOM and FVM defects Ray Effect

Ray Effect

Theray effect is due to theangular discretization

(c) Nθ ∗Nφ = 4∗4 (d) Nθ ∗Nφ = 20∗20

The remedy is to increase the number of discrete ordinates.
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DOM and FVM defects False Scattering

False Scattering

Thefalse scatteringis due to thespatial differencing scheme.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1000

2000

3000

4000

5000

6000

7000

8000

9000
Top wall incident radiation 

 

 

Ref S2S
(4*4) 1nd upwind

(4*4) 2nd upwind

The remedy is to use abetter spatial differencing scheme or afiner
mesh(increase CPU time).
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Modified DOM and FVM
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Modified DOM and FVM Treatment of Directional Sources

Intensity Splitting

A MDOM improves the treatment of the isolated boundary sources.

Aim : Avoid the ray effect

Method : Handle the direct boundary radiation separately from
the medium radiation

The intensity is expressed as the sum of a direct and diffuse intensity

I(~r,~si) = Id
ν(~r,~si)+ Is

ν(~r,~si)

I
s

I
d

I
s

I
d

Collimated
radiation

Cavity

I =     +  

scattering
emission
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Modified DOM and FVM Treatment of Directional Sources

Direct Intensity

Id
ν comes directly from a collimated or diffuse (wall) source.

~si ·
−→
∇ Id

ν(~r,~si) = −βνId
ν(~r,~si)

Directional contribution from a boundary

Id
ν(~r,~si) = Id

ν(~rw,~si)exp

[

−βν|~r −~rw|
]
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Modified DOM and FVM Treatment of Directional Sources

Diffuse Intensity

Is
ν is the remaining intensity which is emitted and scattered bythe

medium.
~si ·

−→
∇ Is

ν(~r,~si) = −βνIs
ν(~r,~si)+Ss

ν(~r,~si)

with the source term defined by

Ss
ν(~r,~si) = κaνIbν +κsν

Z

4π

(

Id
ν(~r,~sj)+ Is

ν(~r,~sj)

)

Pν(~r,~sj →~si)dΩj

= κaνIbν +κsν

Z

4π
Is
ν(~r,~sj)Pν(~r,~sj →~si)dΩj

+κsν

Z

Aw

Id
ν(~rw,~si)exp[−βν|~r −~rw|]Pν(~r,~sj →~si)

~nw ·~si

‖~r −~rw‖2 dAw
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Modified DOM and FVM Treatment for Scattering

Treatment for Scattering

A MDOM improves the convergence when phase function with strong
forward peak are considered.

Aim : Reduce the number of iteration due to scattering

Method : Remove the forward peak and treat it as transmission

Small changes :only the definitions of the extinction coefficient and
the source term

Si
p,m = κaIb(Tp)+κs

M

∑
j=1
j 6=i

∆ΩjI
j
pPji

p (3)

βm = β−κs∆ΩiP
ii
p (4)
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Monte Carlo Method Monte Carlo Principle

Monte Carlo Estimator

The Monte Carlo method is used to estimate integrals such as :

S=
Z b

a
f (x)pX(x)dx= E(f (X))

Principle : produce a series ofindependant random variables
(x1,x2, ...,xN), with N → ∞, from pX on [a,b] and compute the Monte
Carlo estimatesN (E(sN) = S) :

sN =
1
N

N

∑
i=1

f (xi)

pX is aprobability density function : uniform,pX(x) =
1

b−a
sN Monte Carlo estimate
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Monte Carlo Method Monte Carlo Error Estimate

Monte Carlo Error Estimate

Applying the Central Limit Theorem, thestandard error of the mean
sN can be estimated by

σN =
1√
N

√
√
√
√ 1

N

N

∑
i=1

f (xi)2−
(

1
N

N

∑
i=1

f (xi)

)2

Error bars (confidence interval) :P(sN−σNγ ≤ S≤ sN +σNγ)

σΝ

sΝ

P = 99%,γ ≈ 2.56

P = 95%,γ ≈ 1.96
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Monte Carlo Method Random Sampling

Random Sampling

ℜ is uniformly distributed in[0,1] thenxi = b is randomly sampled
with

F(X ≤ b) =

Z b

−∞
pX(x)dx= ℜ

Probability density function :pX(x)
∀x∈ R, pX(x) > 0 and

R +∞
−∞ pX(x)dx= 1

Cumulative distribution function F(x)
(positive, monotone, non-decreasing and
∈ [0,1])
F(X ≤ b) =

R b
−∞ pX(x)dx

1

0

R

F(x)

x i x
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Monte Carlo Method Random Sampling

Next...

Questions and Practical Work on the Monte Carlo method
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