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Introduction  Influence of Radiation

Influence of Radiation

© In solar receptors-reactors, heat and mass transfer modesa
coupled.
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Influence of Radiation

© In solar receptors-reactors, heat and mass transfer modesea
coupled.

© At high temperature the heat transferdagliation becomes
predominant.
© To predict the influence of radiation one neadsodel for
radiative heat transfer
o to compute theadiative fluxes on the walls
o and theradiative source termsin a participative medium (emits,
absorbs or scatters radiation)

Cyril Caliot (PROMES-CNRS Lab.) Numerical Methods in Radiative Transfer 11 june 2010 4/38



Dependencies of Radiation

Radiative transfer models
have to deal with Y

@ theangular (or
directional)
dependency
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Dependencies of Radiation
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Introduction ~ Radiative Transfer Equation

Radiative Transfer Equation
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Radiative Transfer Equation

= div(T, Aly(T, Aly(T, Aly(T,
§-Uh(rs) = gsé)=w éxé)ﬂn éyé)‘f‘ai gzé)

Cyril Caliot (PROMES-CNRS Lab.) Numerical Methods in Radiative Transfer 11 june 2010 7138



Irradiation and Radiative Flux

The monochromatic incident radiation
41T
Gy(F) = / Iy (F,3) dQ
0
The monochromatic radiative flux vector

Gy (F,3) = /04T[IV(?,§)§dQ

The total radiative flux at a surface

O n(F,3) =T (7,3) - T = /Ow dv /O4nlv(?,§) <§ﬁ> dQ
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Introduction = Balance Equations

Balance Equations

0
P+ T (pv) =0
a(pV) — L — - = N
o +0-(pveVv)=—0Op+ 0O T +pf
d(pe = -
P®) 5 [(pe+p)v) =T (T-v)+efv- 0.3 +R
ot —~—
Flux Divergence
— —
O-d=0-( % + G )
~~— ~~
Conductive Radiative
— — —
O-G=0-(—=AOT)
SQr:_/ Ka\)( dQIV_4T[Ib\)) dV
0 4

= _/o Kav(Gy — 471y ) dv -B-QP
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Numerical Methods

Numerous methods are used in radiative transfer
@ Spherical Harmonics Approximation : PN
@ Discrete Ordinates Method : DOM
o Finite Volume Method : FVM
@ Zonal Method : ZM
@ Monte Carlo Method : MCM
@ and others ...
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Angular Quadratures

The integrals over the directions are replaced by numerical

guadratures :
M
fdQ =" AQ;f(9)
/4T[ ];

@ § are the quadrature points (the discrete ordinates)
o AQj (=w) are the quadrature weights (solid angle increments)

M
:;AQJ- Iv(F.3)

(7.9 / dv ZAQJ .
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Angular Quadratures

In the radiative transfer equation, the integral over tHelsmgle is
approximated by division into increments.

§- OIy(1,3) = —Bulu(T,3) + Kalow (T(F))
M
+ Ksv z AQjly(T,§)Py(T,§ —9)
j=1

The boundary condition (diffuse gray wall) becomes :

(TS = Sl (T(F) + 2 5 8Oy (F§) -
Mw-§<0
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Discrete Ordinates Method Angular Quadratures

Symmetric Quadrature Sets

To guarantee a solution invariance for any rotation of90° around
any coordinate axis the quadrature should have

© symmetric weightsand
© symmetric ordinates

Description of the directions in one octantsufficies to describe the
directions in all octants.
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Angular Quadratures Sets

Many quadrature sets were
developped :

@ thelevel-symmetric S-N
quad. &)
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Angular Quadratures Sets

Many quadrature sets were
developped :

@ thelevel-symmetric S-N
quad. &) | roon

@ theT-N quad. T»)

T P10)

P(1.0.0)
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Discrete Ordinates Method Angular Quadratures

Angular Quadratures Sets

Many quadrature sets were
developped :

@ thelevel-symmetric S-N
quad. &)

@ theT-N quad. T»)

@ thepolar/azimuthal
angular quad.
(No=2;Nyp=2)
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Discretization

To show how the DOM works we will consider
© a2D domain with 2D volume elements and
@ acell-centereddiscretization.
To solve the I?TE, thénite volume method will be used.
N

0,
n*"l
a 4
Ly
4 L ]
w B £ E
s/
Si N
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Discrete Ordinates Method Discretization

Discretized RTE

The RTE is integrated over a control voluig the LHS of RTE gives

/\/Cg-ﬁlv(?,é)dV:/vcﬁ- <§Iv(?,§)) dV:/Alv(?A,Q)(QT\) dA

while the RHS gives

/VC (— Bulv(T,3) +&(?p,é)) dv = vc<— Bulv(T.) +a(rp,g))

with changes in the notation, the RTE becomes

Nt

kzllik(é-ﬁk)Ak:vc(—Blﬁsg)
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Discrete Ordinates Method Discretization

Closure Scheme

Y
N. )
nnT n {:"
4 4
./ W
¢ e’ ]
/S E . E
Ny Ne
ﬁsl s /
Si hy
> x
Nt

kzllli((é'ﬁk)AkZVc<—B|:3+sb)

(el = Aul) + (Aol — Ay = Vo(=Blp) o
Need of a closure scheme such asgteg, diamond, CLAI\ﬁEéfc..
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_DiscreteOrdinatesMethodR e
Spatial Discretization

The evolution of the intensity insidé: is given by
1 = (1-y)l,+Vk
= (1-y)ls+Vi,
For the step modgl= 1 and for the diamond schernge= 0.5.

.
i
I|n

i
Step model Diamond-difference (linear model)
. 1 . .
le = —(lb—(1-y)l)
Y
. 1 . .
h = b=y L@
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Discrete Ordinates Method Discretization

W (Al — Aylly) + i (Anlh — Adl) = Vp(S, — BIY)

N o (LN CERR W)
Adlh—AdL = \—]}(Anhio—lis(An(l_V)"‘VAs))

i HiAewlyy + NiAnsl 5+ YSVp
P A+ NiA+HYBY)

Aew = (1-Y)Aet+YAw
As = (1-Y)Ar+VYAs

M . m
J:
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Convergence Method

Geometrical informations anf, P, X fields are given.
© Choose a discrete ordinae
@ Compute, (in each cell)
© Progess by a point-by-point iteration in thedirection
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Finite Volume Method =~ Domain Discretization

Domain Discretization

For a monochromatic RTE the space and angular variables are
independent. In the FVM,
© thespaceis subdivided intacontrol volumes(CV).
@ thesolid angle4mtis divided intoM control angles(CA).
The directional intensity at nodge lyp(S)
@ is obtained byntegrating the RTE over a FV and a CA.
@ is assumedonstantover the FV and CA.

N, Z 4 Control angle, AQ'
’ AT
2y,
W B & E !
; =
S Sl/ S +
x ¥ ¢ ¢
(a) control volume (D) Control angle - TERTor
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RTE Discretization

Integration of the LHS of the RTE (Green-Ostrogradski) give
[ [ s Onrsavea = [ [ 1as) 6 da
AQ1 Ve AQ /A

while the RHS gives

/m /V (—Bvlv(?,§)+&(r,é)) dv dQ' = <_BV|V+&> VoAQ

Discretized RTE
Nnb )

2. bAnb/ (8 Tinp)dQ' = (—BIHS{,) VeAQ

= Ka|b<Tp>+KsJ; Wrd g
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Finite Volume Method =~ RTE Discretization

RTE Discretization
Nnb . . ) )
z I / (8- Tinp)dQ' = (—Bl;)+sp) VeAQ!

To solve the RTE a closure scheme such asufiveind (step),
diamond, CLAM or exponentialscheme (etc.) can be used.
Then, the RTE can be written as

i ainbli A 1 p
%'p % n
If the upwindscheme is used the coefficients are

%max( 6Dl )+BVCAQi , Dl = / Qi(s-ﬁnb)dczi
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DOM and FVM defects  Ray Effect

Ray Effect

Theray effect is due to theangular discretization

1.02e+09 1.00e+09
. 9.69e+04 . 9.51e+04
9.19e+04 / 9.01e+04
8.69e+04 8.52e+04
8.19e+04 8.03e+04
7.69e+04 7.540+04
7.19e+04 7.05e+04
6.690+04 6.560+04
6.19e+04 6.07e+04
5.690+04 5.580+04
. 5.19e+04 5.090+04
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6.84e+0: 6.74e+0!
1.84e+03 1.84e+03

(C) No*Np=4+x4 (d) Ng Ny =20+ 20

The remedy is to increase the number of discrete ordinatégkz==@
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False Scattering

Thefalse scatteringis due to thespatial differencing scheme

Top wall incident radiation

8000
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6000 . . .
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4000-
........................................................
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a a

000 —"lxml"-— ]

The remedy is to uselaetter spatial differencing scheme offiaer
mesh(increase CPU time). @
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Intensity Splitting

A MDOM improves the treatment of the isolated boundary sesirc
@ Aim : Avoid the ray effect

@ Method : Handle the direct boundary radiation separately from
the medium radiation

The intensity is expressed as the sum of a direct and diffusasity

1(7,3) =19(F,3)+13(7,3)

Cavity

Col_llm_ated emission
radiation :

scattering S .
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Direct Intensity

19 comes directly from a collimated or diffuse (wall) source.

§- 019(1,3) = —pId(T,3)

Directional contribution from a boundary

|3(r7§) = |\C;i(?w7§) eXp{_ Bv |?—?w|}
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Modified DOM and FVM  Treatment of Directional Sources

Diffuse Intensity
5 is the remaining intensity which is emitted and scatterethiey
medium.

§ 0138 = —BUIS(rs) +S5(.8)
with the source term defined by

S(FS) = Kavlow+Key Aﬂ(IS(?@)HS(?@))PVWE%mdoj

_ KaVIbV+KS\,An|3(T',$)PV(?,§1 ~%)doy

Ky /AWlSWé)exp[—Bv\?—mqums —3)

Ny S
[F—rul? 4

R
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Modified DOM and FVM  Treatment for Scattering

Treatment for Scattering

A MDOM improves the convergence when phase function withrsjr
forward peak are considered.

@ Aim : Reduce the number of iteration due to scattering

@ Method : Remove the forward peak and treat it as transmissior
Small changesonly the definitions of the extinction coefficient and
the source term

Spm = Kalp(Tp) +Ks ZLAQJ-IJpPg (3)
=1
) J#i

Bm = B—kKAQPy (4)

Cyril Caliot (PROMES-CNRS Lab.) Numerical Methods in Radiative Transfer

11 june 2010 33/38



Table of Contents

@ Introduction © Modified DOM and FVM

© Discrete Ordinates Method @) Monte Carlo Method
@ Monte Carlo Principle

e Finite Volume Method @ Monte Carlo Error Estimate
@ Random Sampling

© DOM and FVM defects

Cyril Caliot (PROMES-CNRS Lab.) Numerical Methods in Radiative Transfer 11 june 2010 34/38



Monte Carlo Method = Monte Carlo Principle

Monte Carlo Estimator

The Monte Carlo method is used to estimate integrals such as :

S— / x) dx = E(f (X))

Principle : produce a series afidependant random variables

(X1,X2,...,XN), With N — oo, from px on [a,b] and compute the Monte
Carlo estimatey (E(sy) =9 :

@ px is aprobability density function : uniform,px(x) = —— .
@ sy Monte Carlo estimate %W@

1
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Monte Carlo Method =~ Monte Carlo Error Estimate

Monte Carlo Error Estimate

Applying the Central Limit Theorem, tretandard error of the mean
Sy can be estimated by

on=—r %if(w—(%if(m)z

Error bars (confidence intervalP(sy —ony < S< sy + OnY)

P = 99%,y ~ 2.56
V| 3219 24,19 P= 95%,y% 1.96

Yo
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Random Sampling

O is uniformly distributed in0, 1] thenx; = b is randomly sampled
with

b
F(X < b) = / px(X) dx= O
—o00
1
Probability density function :px (x) F()
VX € R, px(X) >0 and " px(x) dx=1
Cumulative distribution function F(x) =
(positive, monotone, non-decreasing and ‘
€[0,2))

F(X <b) = [°,, px(x) dx
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Monte Carlo Method = Random Sampling

Questions and Practical Work on the Monte Carlo method
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